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Prefuce 

Although the field of topological embeddings is an active, major area 
of topology, there has not been a comprehensive treatment of the 
theory available. Hence, it has been very difficult for students to become 
knowledgable in this area without close supervision. The  related area 
of piecewise linear (PL) topology was in the same state of affairs until 
1963 when Zeeman’s notes entitled “Seminar on Combinatorial 
Topology” appeared. (Since that time a number of expositions on the 
fundamentals of PL topology have appeared, including those of Stallings, 
Hudson, and Glaser.) I t  is the author’s hope that by structuring the 
theory of topological embeddings, this work will make the area more 
accessible to students and will serve as a useful source of reference for 
specialists in the field. 

A knowledge of general topology as well as of the fundamentals of 
modern algebra is prerequisite for this book. Although an understanding 
of algebraic topology would be helpful, it should not be considered as 
a prerequisite. In  fact, it might be desirable for a student to cover this 
book before studying algebraic topology since some of the material will 
serve as motivation. 

The  topics are organized so as to lead the student into the theory 
in a natural fashion. This development does not take the shortest 
possible route to the frontier, but presents a number of special cases 
and historical discussions. In  general, the material covered is of a “grass 
roots” nature and involves techniques which have found numerous 
applications. The  student who has mastered the topics presented 
should be ready to study the current literature in topological embeddings 
and undertake his own research. I t  will probably be the case that 
problems of current interest will occur to the alert student in the course 
of studying this book. 

It is our purpose to provide a sound basis for development in the area 
of topological embeddings, and not to give an exhaustive treatment of 

xi 



xii Preface 

the current status of every facet of the area. (Indeed such a treatment 
would soon be obsolete.) However, a concrete mathematical introduction 
to the main elements is given and the current status of each is discussed. 
Many references are included for the reader who wants to pursue a given 
subject further. In  the Appendix, several topics are mentioned which are 
particularily appropriate as follow-up material to this book. 

Topological embeddings is extremely geometrical in nature. In  order 
to study or do research in the area successfully, it is almost a necessity 
that one develop a facility for visualizing the geometry and describing 
it via schematic figures. Many times a very complex idea can be conveyed 
rather quickly through use of a picture. Also, proofs are more easily 
remembered if one has descriptive pictures associated with them. 
This book contains many figures. We hope that they serve to help the 
reader understand the ideas presented more readily and guide him in 
describing his own ideas pictorically. 
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C H A P T E R  1 

Main Problem and Preliminary 
Notions 

I .I. INTRODUCTION 

Included in Sections 1.2 and 1.5 of this first chapter are brief discus- 
sions, in a general setting, of the key problem of topological embeddings. 
Also, in this chapter, we lay some foundations for studying this problem. 
A number of basic definitions are made in Section 1.3 and topological 
manifolds are considered. Several elementary properties of manifolds 
are included as exercises at the end of this section. Section 1.4 is devoted 
to a discussion of the fundamental theory of the category of polyhedra 
and piecewise linear maps. The  proofs of a few standard theorems, 
although easy, are omitted because they appear frequently in the Iitera- 
ture. Piecewise linear manifolds are defined in Section 1.6 and the basic 
notions associated with them are developed including general position, 
relative simplicia1 approximation, regular neighborhoods, relative regular 
neighborhoods, and handlebody decompositions. In  Section 1.7, we say 
what it means for a submanifold to be locally flat and establish a few 
basic facts, such as the transitivity of local flatness. Here we also prove 
that locally collared implies collared and discuss collars, bicollars, 
pinched collars, and pinched bicollars. Finally, in Section 1.8, we 
consider cellular sets. First a decomposition theorem and the generalized 
Schoenflies theorem are proved. The  section is concluded with several 
useful consequences of the generalized Schoenflies theorem. 

1.2. MAIN PROBLEM 

An embedding of a topological space X into a topological space Y is 
a homeomorphism f: X -+ Y of X onto a subset of Y. Two embeddings 

1 
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f: X -+ Y and g: X + Y are said to be equivalent if there is a homeo- 
morphism h: Y +  Y of Y onto itself such that hf = g .  This  is an 
equivalence relation on the set of all embeddings of X into Y.  We are 
now ready to state the main problem. (For further discussion of the 
main problem see Section 1.5.) 

Main Problem of Topological Embeddings. What are the equivalence 
classes of embeddings of a space X into a space Y ? 

In  order to formulate an even stronger question than the one above, we 
make the following definition: An isotopy of a topological space Y is a 
collection {e,}, 0 < t < 1, of homeomorphisms of Y onto itself such that 
the mapping e: Y x [0, I ]  --t Y defined by e(x, t) = el(x) is continuous. 
A homeomorphism h: Y-+ Y is said to be realized by an isotopy 
{e,} of Y if e, = 1 and el = h. Two embeddings f and g of a space X 
into a space Y are isotopically equivalent if they are equivalent by a 
homeomorphism h which can be realized by an isotopy of Y. Now we are 
ready to state the stronger question mentioned above: What embeddings 
of a space X into a space Y are isotopically equivalent ? 

1.3. TOPOLOGICAL MANIFOLDS 

We view Euclidean n-space En, as a metric space in the usual way, 
that is, with metric 

I 1'2 dist((x, , . * a ,  xn), (Yl 9 ... I Yn)) = [ f (.a - YiY 
i=l 

and as a vector space over the field of real numbers by defining addition 
and multiplication by scalars coordinatewise. Upper n-Euclidean 
half-space E: is the subspace of En consisting of points having non- 
negative last coordinates and lower n-Euclidean half-space EIl is the 
set of all points of En having last coordinates less than or equal to zero. 
We define the standard n-sphere Sn to be {x I x E En+l and 1 1  x 1 1  = l}; 
s+ - - Sn n Eq+l and S? = Sn n E"'. 

Let I denote the interval [-1, 13 and let the Cartesian product of I 
with itself n times, denoted by In, be called the standard n-cube. We 
define the interior of In, denoted by Int In, to be the Cartesian product 
of (- 1 ,  1) with itself n times and the boundary of In, denoted by either 
Bd In, W ,  or 1". to be In - Int In. A space homeomorphic to In is called 
a (closed) n-cell. An n-dimensional topological manifold M is a 
separable metric space each point of which has a closed neighborhood 
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which is an n-cell. A space homeomorphic with I n t P  is called an  
open n-cell. T h e  interior of M ,  denoted by I n t  M ,  is the set of all 
points which have neighborhoods which are open n-cells and the boun- 
dary of M ,  denoted by either Bd M ,  aM, or A!l, is M - In t  M. We say 
that M is unbounded if A!l = 8, closed if M is compact and unbounded, 
and open if M is noncompact and unbounded. 

EXERCISE 1.3.1. A topological space is said to be locally Euclidean if 
each point has a neighborhood which is homeomorphic to Euclidean n-space. 
(a) Convince yourself that the long line is a locally 1-Euclidean space which is 
neither separable nor metric. (You may refer to [Hocking and Young, 1, p. 551 
to do this.) (b) Construct a locally n-Euclidean, non-Hausdorff space for n 2 1. 
(Hint: Let A be a subspace of a topological space X .  By a space obtained through 
splitting the subspace A of X we mean, as given in the remark in [Rushing, 71, 
any space homeomorphic to the space ( X  - A )  u ( A  x (0, 1)) having open sets 
of the forms (G - A )  u ( (G n A)  x 0) and (G - A )  u ( (G n A )  x l),where 
G is open in X .  Now show that the space you seek can be obtained by splitting 
a nonempty, proper, closed (as a subset) subspace of a connected, locally n- 
Euclidean space.) 

EXERCISE 1.3.2. Show that if a point x of a manifold M has a neighborhood N 
such that there is a homeomorphism h: N - Z", where h(x) E Bd I", then x 
has no neighborhood homeomorphic to IntZ". T o  do this you may use the 
following classical theorem. For a proof of this theorem refer to p. 303 of 
[Eilenberg and Steenrod, I] or p. 278 of [Hocking and Young, I]. Proofs of this 
theorem exist which do not use algebraic topology, for example, Chapter I11 
of [Cantrell, 51. 

Let U, and U, be homeomorphic subsets 
of the locally n-Euclidean spaces IM, and M2 . If U, is open in M ,  , then U, is open 
in M,.  

lnvariance of Domain Theorem. 

EXERCISE 1.3.3. If h : M - Q  is a homeomorphism of the manifold IM 
onto the manifold Q, then show that h(i3M) = aQ. (Hint: Use invariance of 
domain.) 

EXERCISE 1.3.4. Show that the boundary of an n-dimensional manifold is an 
(n - 1)-dimensional manifold, without boundary. (Hint: Use Exercise 1.3.2.) 

If M and Q are manifolds then show that a(M x (3) = 

( M  x aQ) u (aM x Q). (The derivative of a product is the first times the 
derivative of the second plus the derivative of the first times the second!) 

EXERCISE 1.3.5. 

EXERCISE 1.3.6. Show that the dimension of a manifold is well-defined, 
that is, show that two manifolds M m  and QQ (superscripts denote dimensions) 
such that m > 4, cannot be homeomorphic. (Hint: Use invariance of domain.) 
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EXERCISE 1.3.7. A space X is homogeneous if for any pair of points x and 
y in X there is a homeomorphism h of X onto itself such that h(x)  = y. Show that 
every connected n-manifold M without boundary is homogeneous. 

EXERCISE 1.3.8. Associated with any isotopy {h,}  of a space Y is the mapping 
H :  Y x [0, 11 + Y x [0, 13 defined by H(x ,  t )  = (h,(x),  t ) .  This mapping is 
one-to-one, onto, and continuous. We say that an isotopy {ht}.  0 < t < 1, is 
invertible if the collection {A;’}, 0 ,< t < 1, of inverse homeomorphisms is 
an isotopy. Obviously an isotopy {h,}  is invertible if and only if the associated 
mapping H is a homeomorphism. By using invariance of domain, prove that 
isotopies of unbounded manifolds are invertible. (See [Crowell, I ]  for a proof that 
every isotopy of a locally compact Hausdorff space is invertible.) 

1.4. THE CATEGORY OF POLYHEDRA 

A N D  PIECEWISE LINEAR MAPS 

This  section develops the basic definitions and properties related to the 
category of polyhedra and piecewise linear maps. It is the intent that the 
organization will give a “feeling” for this category as well as present a 
concrete develcpment. Some of the proofs of standard theorems are 
omitted because they appear elsewhere in the literature and because we 
must conserve space in order to include all of the topics desired. Refe- 
rences will be given for these elementary omitted proofs although the 
reader could probably derive his own proofs without too much effort. 
Some good supplementary references for the material covered in this 
section are: Chapter I of [Glaser, 31, Chapter I of [Zeeman, 11, Chapter I 
of [Hudson, I], Chapters I and I1 of [Stallings, 41, Chapter V of [Hocking 
and Young, I], Chapter IV of [Singer and Thorpe, 11, Chapter I of 
[C.H. Edwards, 11 and Chapter IV of [Alexandroff, 11. 

Points xo , x1 , ..., xk in En are said to be pointwise independent if the 
vectors x1 - xo , x2 - xo , ..., xk - xo are linearly independent. 

EXERCISE 1.4.1. Show that the above definition is independent of which 
point is chosen as xo . 

T h e  K-dimensional hyperplane H k  determined by the K + 1 
pointwise independent points x,, , x l ,  ..., xk is 

k 

i=O 
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EXERCISE 1.4.2. Show that the hyperplane H k  determined by the pointwise 
independent points xo , x1 , ..., x k  is the same set as a translation by xo of the 
vector space spanned by x1 - xo , x2 - xo , ..., xk  - xo , that is, show that 

The unique numbers t o ,  t ,  , ...) t ,  are called the barycentric coor- 
dinates with respect to xo x1 , ..., x, of the point x = tixi in Hk. 
The set of points in Hk which have nonnegative barycentric coordinates 
with respect to the pointwise independent set xo, x1 ,..., xk is called 
the k-dimensional simplex spanned by xo , x, ,..., x, and is denoted 
by (xo, x1 ,..., x,). The points x o ,  x1 ,..., x, are called the vertices of 
( x o ,  x1 ,..., x,.). A simplex T spanned by a subset of the vertices of a 
simplex u, is called a face of u, written T < u. The  one-dimensional 
faces, that is, faces spanned by two vertices, are called edges. The  empty 
set is a (- 1)-dimensional simplex and is a face of each simplex. Those 
faces of a simplex other than the simplex itself are called proper 
faces. The collection of all proper faces of a simplex is the boundary 
of the simplex. 

A subset X of En is convex if for each pair of points x and y in X the 
simplex ( x ,  y )  is in X. The convex hull of a set X in En is the inter- 
section of all convex subsets of ETL that contain X. 

If the points xo , xl, ..., x k  are pointwise independent in 
En then (xo, xl, ..., x k )  is the convex hull of {xo,  xl, ..., xk} .  

Show that the diameter of the convex hull of any set is 
equal to the diameter of the set itself. (In particular the diameter of a simplex 
is the length of its longest edge.) 

A map f of a simplex ( xo  , x1 , ..., x,.) into En is linear if f ( x t i x i )  = 

x t i f (x i )  for each point x tjxi E (xo , x l ,  ..., x,). Since a linear map of 
T = (xo xl , ..., x k )  is determined by its values on the vertices, it follows 
that if c7 = ( y o ,  y1 ,..., ym)  is an m-simplex m < k, then there is a 
unique linear mapf of T onto u such that each f ( x i )  is some fixed y j ,  and 
uizl y j i  = (Jy=l yi . If k = m, thenf would be a linear homeomorphism. 
Notice, however, that the image under a linear map of a simplex into 
E n  need not be a simplex. (This can happen if the images of the vertices 
are not pointwise independent.) 

A (rectilinear) simplicia1 complex is a finite collection K of sim- 
plexes (all in En) such that 

(1) u E K a n d T < u * T E K ,  
(2) o ~ K a n d ~ ~ K = . u n ~ < u a n d a n ~  < T .  

k 

EXERCISE 1.4.3. 

EXERCISE 1.4.4. 

k 
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A complex K is said to be K-dimensional (or a K-complex) if K is the 
maximum dimension of the simplexes of K. The set I K I = UoeK u is 
called a polyhedron and K is called a (rectilinear) triangulation of 
I K I . The dimension of a polyhedron P is defined to be the dimension 
of a complex which triangulates it. 

EXERCISE 1.4.5. Show that the dimension of a polyhedron is well-defined, 
that is, show that any two triangulations will have the same dimension. (Hint: 
Use invariance of domain.) 

A subcomplex of a simplicia1 complex K is a subcollection of K 
which is itself a complex. A subpolyhedron of a polyhedron P is a set 
which is the polyhedron of some subcomplex of some triangulation of P. 

Theorem 1 A.1. The intersection of two polyhedra is a subpolyhedron 
of each. The product of two polyhedra is a polyhedron. (See Lemma 1.4 
of [Hudson, I]  or Corollary 2, p. 5, Chapter I of [Zeeman, I].) 

The  simplicial complex L is said to be a subdivision of the complex 
K if I K I = I L I and every simplex of L is contained in a simplex of K .  
The barycenter 6 of a p-simplex u is the point whose barycentric 
coordinates are all equal to l / ( p  + 1). The  first barycentric sub- 
division of a complex K with simplexes u1 , a2, ..., uk is the complex 

EXERCISE 1.4.6. Show that K' is indeed a subdivision of K. (You may refer 
to p. 78 of [Singer and Thorpe, 11.) 

The nth barycentric subdivision K(") is defined inductively by 
K(") = (K(%-I))'. Derived subdivisions are defined in the same way, 
except that the barycenter of the simplex ui is replaced by an arbitrary 
interior point. The mesh of a complex is the maximum of the diameters 
of its simplexes. The  following theorem is one reason for the importance 
of barycentric subdivisions. 

Theorem 1.4.2. If K is a complex of dimension K ,  then mesh K' 
< ( k / ( k  + 1)) * mesh K. In  particular, limn+m mesh K(") = 0. 

PROOF. Let (8, , 8, , ..., e l )  be a simplex of maximal diameter. 
By Exercise 1.4.4 there exist m and n such that mesh K' = diameter 
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(arn, 8,) where urn is a face of urn.  Then, we can let unz = ( vo  , ..., v p )  
and u, = ( v , ,  ..., vp  , v ~ + ~ ,  ..., up) .  Thus, 

meshK<- meshK. ( p  + 1)qmesh K = __ 
k + l  

1 I 
- 

p s 1 q S - 1  q + l  

Theorem 1.4.3. If L is a subcomplex of K,  then every subdivision 
of L can be extended to a subdivision of K,  that is, given a subdivision L ,  of 
L,  there is a subdivision K ,  of K such that L ,  is a subcomplex of K ,  . 

PROOF. Inductively, in order of increasing dimension, subdivide 
each simplex u in I K I - I L I that meets I L I into the simplexes 
spanned by vertices of each simplex in &* along with a fixed point x in 
Int u. 

Theorem 1.4.4. If K and L are simplicia1 complexes with I L I C I K 1, 
then there is a derived subdivision of K which contains as a subcomplex some 
subdivision of L. (See Theorem 1.2 of [Glaser, 31 or Lemma 4 of [Zeeman, 
1 ,  P. 81.) 

Corollary 1.4.1. If K andL are two complexes such that I K I = I L I, 
then K and L have a common subdivision. 

Corollary 1.4.2. 

PROOF. 

The union of two polyhedra is a polyhedron. 

Use the theorem to subdivide a large simplex containing 
them both, so that each appears as a subcomplex. Then, the union is also 
a subcomplex. 
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A map f :  K -+ L of the simplicia1 complex K into the simplicial 
complex L is a triple ( I f  1, K ,  L)  where I f  I : I K I + I L I is a continuous 
map of topological spaces. From now on we will identify I f  I and f. 
The map f :  K -+ L is said to be linear if it maps each simplex of K 
linearly into some simplex of L. In  the case that the image of each simplex 
of K is a simplex of L, the map f is said to be simplicial. A simplicial 
homeomorphism is called an isomorphism. A piecewise linear (PL) 
map of the complex K into the complex L is a map f: K -+ L for 
which there is a subdivision K’ of K such that f :  K’ + L is linear. 

REMARK 1.4.1. It can be shown that iff is a PL map of simplicial complexes, 
then the complexes can be subdivided so that the map is simplicial. Thus, if 
f: K -+ L is a PL homeomorphism, then so isf-l: L -+ K. 

A map f :  X + Y of the polyhedron X into the polyhedron Y is said 
to be a piecewise linear (PL) map of polyhedra iff: K -+ L is a PL 
map of complexes for every pair of triangulations K ,  L of X ,  Y. 

It can be shown that if the f of the above definition is PL REMARK 1.4.2. 
for some pair of triangulations, then it is PL for every pair. 

REMARK 1.4.3. It can be shown that the composition of two PL maps is a 
PL map. 

1.5. M E T H O D  OF ATTACKING T H E  M A I N  PROBLEM 

In  this book the spaces X and Y of the main problem will usually 
be polyhedra. In  this case, we see that we can break the problem of 
studying embeddings of X into Y down into two problems. 

Problem 1 (The taming problem). Which embeddings of X into Y 
are equivalent to P L  embeddings? 

Problem 2 (The PL  unknotting problem). Which P L  embeddings 
of X into Y are equivalent? 

We will usually be happy if we can show that the two embeddings 
under consideration are equivalent to P L  embeddings, for we will have 
then reduced our topological problem to the PL category and life is 
relatively simple in that category. Of course, we will also be happy if we 
can show that one of the embeddings is equivalent to a PL  embedding 
and the other is not, because then they would have to be in different 
equivalence classes. We will be concerned with Problem 1 more in the 
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latter part of this book. At first most of the techniques will determine 
whether or not the embeddings under consideration are equivalent 
without passing to the PL category. 

1.6. PIECEWISE LINEAR MANIFOLDS 

AND PIECEWISE LINEAR T O O L S  

This section presents the fundamental theory of P L  manifolds. Some 
supplementary references for this section are: [Glaser, 31, [Hudson, 11, 
[Stallings, 41, [Zeeman, 11, and [C.H. Edwards, 11. 

A. Piecewise Linear Manifolds 

In  the preceding section we said that in this book the space X (called 
the embedded space) and the space Y (called the ambient space) of 
the main problem will usually be polyhedra. We are about to define 
infinite polyhedra; and the spaces X and Y will always be either finite 
or infinite polyhedra. In  fact, the ambient space will always be a special 
type of (possibly infinite) polyhedron called a PL manifold, which we 
are also about to define. The  embedded space will also be a PL manifold 
many times, although not always. 

A (rectilinear) locally finite simplicia1 complex (or possibly 
infinite complex) is a (possibly infinite) collection K of simplexes in En 
such that 

(1) u E K a n d 7  < a  * T E K ,  
(2) u ~ K a n d ~ e K  * a n 7  < u a n d u n ~  < ~ , a n d  
(3) each point in j K I = UoEK u has a neighborhood which intersects 

only a finite number of simplexes of K nonvacuously. 

An infinite polyhedron is a subset of En which can be triangulated 
as a locally finite simplicial complex having an infinite number of sim- 
plexes. Triangulation by locally finite complexes is defined analogously 
to the finite case. Subcomplexes and linear maps of infinite complexes 
and subpolyhedra of infinite polyhedra are also defined analogously to 
the finite case. A piecewise linear (PL) map of the possibly infinite 
complex K into the possibly infinite complex L is a map f: K + L such 
that there is a subdivision K' of K for which f: K' -+ L is linear and such 
that f (I K I )  is a possibly infinite polyhedron. (Notice that f( I K I) need 
not be a subpolyhedron of L.) Now a PL map for infinite polyhedra is 
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defined analogously to the finite case. (For an exposition of “weaker” 
definitions as well as a well written justification of those definitions see 
[Zeeman, 41.) A PL n-ball is a polyhedron which is PL homeomorphic 
to an n-simplex and a PL n-sphere is a polyhedron which is P L  homeo- 
morphic to the boundary of an (n + 1)-simplex. If u is a simplex of the 
(possibly infinite) complex K ,  then the star of u in K,  denoted by 
St(u, K) ,  and the link of u in K,  denoted by Lk(u, K ) ,  are defined as 
follows: 

St(u, K )  = (7 E K I for some y E I(, u < y, and 7 < y},  
Lk(u, K )  = {T E St(u, K)I T n u = 0). 

A (possibly infinite) complex K is called a combinatorial n-mani- 
fold if the link of each of its vertices is either a PL (n - 1)-sphere or a 
P L  (n - 1)-ball. We will now give two definitions of piecewise linear 
manifold and we will show that they are equivalent (Theorem 1.6.2) a 
little later. 

Definition PL-1. A (possibly infinite) polyhedron M C E m  is said 
to be a PL n-manifold if it can be triangulated as a combinatorial n- 
manifold. (We will show in Corollary 1.6.2 that every triangulation of a 
PL manifold is combinatorial.) 

Definition PL-2. A (possibly infinite) polyhedron M C Em is 
said to be a PL n-manifold if each point of M has a closed neighborhood 
which is PL homeomorphic with an n-simplex. 

The  boundary and interior of a PL  manifold under Definition PL-2 
are defined analogous to the topological case. Equivalent definitions in 
terms of Definition PL-1 will be given later. Unbounded, closed, and 
open P L  manifolds are defined analogous to the corresponding topolo- 
gical definitions. 

Two disjoint simplexes 0 and 7 in En are said to be joinable if there 
is a simplex y which is spanned by the vertices of u and 7. If this is the 
case u and 7 are called opposite faces of y, and y is called the join of u 
and 7, denoted by u * 7. 

EXERCISE 1.6.1. 

EXERCISE 1.6.2. 

Two finite complexes K and L in En are joinable provided that 
(i) if u, u’ E K 
and 7, 7’ E L  then u i 7 n u’ * 7‘ is a common face of u * 7 and u’ * 7’. 
If K and L are joinable, their join is the complex K * L = {a I 7 1 u E K 

Show that Lk(a, K )  = {T E K I 0 * T E K } .  

If u = T * y E K ,  then Lk(u, K )  = Lk(7, Lk(y, K ) ) .  

if u E K and 7 E L ,  then u and 7 are joinable, and (ii) 
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and T E L } .  (Notice that K and L are contained in K * L, since the empty 
simplex is a face of every simplex, and so is in K and L and since u t 8 = u 
for any simplex 0. Also notice that K * L = K if L is the complex con- 
taining only the empty simplex.) Two disjoint polyhedra X and Y in 
En are said to be joinable if any two triangulations K and L of X and 
Y are joinable. 

Show that the polyhedra X and Y in En are joinable if and 
only if (i) ifL,, is the line segment from a point p E X to q E Y ,  then L,, n X = p 
and L,, n Y = q, and (ii) two different such line segments are either disjoint or 
intersect in an end-point. 

The  join of two joinable polyhedra X and Y is I L * K I, denoted by 
X * Y ,  where L and K triangulate X and Y ,  respectively. It is easy to 
see that X * Y is simply the union of all of the line segments of Exercise 
1.6.3. 

EXERCISE 1.6.3. 

PL PL PL EXERCISE 1.6.4. If Xl M X ,  and Yl M Yz  (M denotes PL homeomorphic), 

The  cone over the polyhedron X with vertex (or cone point) v, 
denoted by V ( X ) ,  is the join of X and the point v. (Notice that there are 
points v such that V ( X )  is defined, because any point in Ek - En, 
k > n, will work if X C En.) The  suspension of the polyhedron X ,  
denoted by Y ( X ) ,  is the join of X with a pair of points (a 0-sphere) called 
the suspension points. (Notice that there are always suspension points 
so that the suspension is defined.) 

Let Bn be a PL n-ball and S" be a PL n-sphere. Show that 
V ( B n )  % Y ( B n )  V(Sn) % Bn+l and Y(Sn)  % Sn+l, where w denotes PL 
homeomorphic. (Notice that, by using Exercise 1.6.4, it may be assumed that 
Bn [S"] is an n-simplex [the boundary of an (n + 1)-simplex].) 

PL then X ,  * Yl M X ,  * Y z  . 

EXERCISE 1.6.5. 
PL 

EXERCISE 1.6.6. Show that BP * Bq % BP+q+l, BP * Sq % BP+q+l, and 
SP * sq S p + a + l .  

Theorem 1.6.1. Let K be a simplicia1 complex, K' a subdivision of K,  
and v a vertex of K. Then, Lk(v, K )  and Lk(v, K' )  are PL homeomorphic, 
as are St(v, K )  and St(v, K'). 

In  view of the next exercise, it is appropriate to mention here 
Zeeman's standard mistake of confusing projective maps with 
piecewise linear maps. (Zeeman does not make this mistake; he just 
observed that other people often make it.) For example, the projectionf 
into the base of a triangle (from the vertex opposite the base) of a segment 
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which is not parallel or perpendicular to the base is not piecewise linear 
(see Fig. 1.6.1). 

Figure 1.6.1 

This difficulty can usually be circumvented by defining pseudo-radial 
prajection as follows. Let K be a complex and let I L I be a polyhedron 
with triangulation L contained in the cone %(I K I )  over I K I with vertex 
v such that for each point p E I K I the line segment L, from v to p 
intersects I L I in a single point. (The radial projection f: I L I --f j K I 
is the homeomorphism defined by f ( x )  = p ,  where p E I K I is the point 
such that L, n I L I = x. We have just seen that the radial projection is 
not always PL.) W ( K )  inherits a natural triangulation from K ,  and by 
Theorem 1.4.4, there is a subdivision of %(K) that contains as a sub- 
complex some subdivision L, of L. The pseudo-radial projection of 
I L 1 into I K 1 is defined to be the linear extension of the radial projection 
of the vertices of L,  into 1 K 1 .  

EXERCISE 1.6.7. Prove Theorem 1.6.1. 

Theorem 1.6.2. Definitions PL-1 and PL-2 of PL n-manifold are 
equivalent. Furthermore, if M is a P L  n-manifold under Definition PL-2 then 
every triangulation K of M is combinatorial. 

It is trivial to see that if M is a PL n-manifold under Defi- 
nition PL- 1 ,  then it is a PL, n-manifold ucder Definition PL-2. Let K be 
a triangulation of M as a combinatorial manifold. Then, the stars of the 
vertices of K give a covering of M by PL n-balls. Since each point of 
M has one of these PL n-balls as a closed neighborhood, it follows that 
M is a PL n-manifold under Definition PL-2. 

Now suppose that M is a P L  n-manifold under Definition PL-2. Let 
J be a triangulation of M and let v be a vertex of J in Int M.  By definition 
PL-2, there is a PL  embedding f: A + M where A is an n-simplex, such 
that f-'(v) E Int A .  By using Theorem 1.4.4, Remark 1.4.1, and Theorem 
1.4.3 we can obtain subdivisions A' of A and J' of J such that f : A' - J' 

PROOF. 
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is simplicial. Thus, Bd A Lk(f-l(v), A ’ )  and Lk(v, J’) % Lk(v, J )  by 
Theorem 1.6.1, and f gives a simplicial isomorphism between 
Lk(f-l(v), A’)  and Lk(v, J’). Hence, Lk(v, J )  is P L  homeomorphic to 
Bd A ,  and is thus a PL (n - 1)-sphere. 

If v is a vertex in Bd M the situation is similar except that 
f-l(v) E Bd A ,  and so it follows that Lk(v, J )  is a PL (n - !)-ball. 

Corollary 1.6.1. Any subdivision of a combinatorial manifold is a 
combinatorial manifold. 

Corollary 1.6.2. Every triangulation of a P L  manifold is com- 

Let us now digress to mention a few classical questions. 
binatorial. 

Question 1.6.1. Is every topological manifold homeomorphic to a P L  
manifold ? 

The answer is yes for l-manifolds and 2-manifolds [Radd, I]. Moise 
showed in [ I ]  that the answer is yes for 3-manifolds without boundary. 
This result was extended in [Bing, 41 and [Moise, 21 to show that 
3-manifolds with boundaries can be triangulated. An alternative proof 
was given in [Bing, 51 based on the approximation theorem for 2- 
complexes. Kirby, Siebenmann, and Wall [ I ]  have recently shown that the 
answer is yes for “most” manifolds of dimension greater than four; 
however, there are some in each dimension greater than four for which 
this is not the case. The  answer is unknown for 4-manifolds. 

Question 1.6.2. Is every topological manifold homeomorphic to a 
polyhedron ? 

The answer is yes for manifolds of dimensions less than four by the 
above references and is unknown for manifolds of dimensions greater 
than or equal to four. 

Question 1.6.3. Is every polyhedron which is a topological manifold, 
also a P L  manifold? 

The  answer is yes for manifolds of dimensions less than four, see 
Theorem I of [Moise, 11, and is unknown for manifolds of dimensions 
greater than or equal to four. 

Question 1.6.4 (Hauptvermutung for polyhedra). If two polyhedra 
are homeomorphic then are they P L  homeomorphic? 
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In  1961 Milnor [ l ]  showed that the answer is no in high dimensions. 
(Another example which is obtained by somewhat easier methods appears 
in [Stallings, I].) 

Question 1.6.5 (Hauptvermutung for P L  manifolds). If two P L  
manifolds are homeomorphic then are they P L  homeomorphic ? 

This is trivially the case for P L  1-manifolds, is classically the case 
but nontrivally for P L  2-manifolds, was proved for triangulated 3-mani- 
folds by Moise [l] in the 1950s, is unknown for 4-manifolds, and has 
recently been shown to be true for most manifolds of dimension greater 
than four and false for a few in every such dimension by Kirby, 
Siebenmann, and Wall. 

Lemma 1.6.1. Let K be a triangulation of the P L  n-manifold M. If u 
is a k-simplex f K ,  then either 

(1) 
(2) 
PROOF. 

Lk(u, K )  is a P L  (n  - k - 1)-sphere and Int u C Int M ,  or 
Lk(u, K )  is a P L  ( n  - k - 1)-ball and u C Bd M. 

The proof will be by induction on k. The case k = 0 follows 
from Theorem 1.6.2. If k > 0, write u = z, * T ,  where ZJ is a vertex of u 
and 7 is the opposite ( k  - 1)-face. Then, Lk(u, K )  = Lk(v, Lk(7, K ) )  
by Exercise 1.6.2. But, by induction, Lk(v, Lk(7, K ) )  is the link of a 
vertex in an (n  - k)-sphere or ball, and is therefore an (n - k - 1)- 
sphere or ball. 

Any point of Int u has u * Lk(u, K )  as a closed neighborhood, and so 
lies in Int M or Bd M according to whether it lies in the interior or 
boundary of this neighborhood. But Int u C Int(u * Lk(u, K ) )  if 
Lk(cr, K )  is a sphere and so Int u C Int M if Lk(u, K )  is a sphere. If 
Lk(u, K )  is a ball, then Int a C Bd(u * Lk(u, K ) )  and so Int  a C Bd M. 
Thus, u C Bd M since Bd M is closed in M .  

Corollary 1.6.3. Each ( n  - 1)-simplex of a combinatorial n-manifold 
K is the face of exactly one or two n-simplexes of K. 

We define the boundary of a combinatorial manifold K to be the 
subcomplex consisting of all simplexes whose links are balls. We now 
define the interior and boundary of a P L  manifold M in terms of Defi- 
nition PL-1 as follows: Let K be a triangulation of M ( K  is combina- 
torial by Corollary 1.6.2). Then, the boundary of M is I Bd K I and the 
interior of M is M - Bd M .  I t  follows immediately from Lemma 1.6.1. 
that these definitions are equivalent to the corresponding definitions in 
terms of Definition PL-2. 
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8. Regular Neighborhoods 

If L is a subcomplex of the simplicial complex K, then we say that there 
is an elementary simplicial collapse from K to L if K - L consists 
of two simplexes A and B, where A = a * B with a a vertex of A. Then, 
I K I = I L I u A and 1 L 1 n A = a * (Bd B). This elementary sim- 
plicial collapse from K to L may be described by saying that “we collapse 
A onto a * (Bd B)” (see Fig. 1.6.2). 

Figure 1.6.2 

The complex K simplicially collapses to the subcomplex L, written 
K < L, if there is a finite sequence of elementary simplicial collapses 
going from K to L. If K simplicially collapses to a vertex, then K is said 
to be simplicially collapsible, written K < 0. 

(a) Show that V ( K )  < 0 for any complex K. (b) Show that 
if L is a subcomplex of K, then V ( K )  < V(L). (c) If I K I is a connected l-poly- 
hedron containing no simple closed curve, show that K \ 0. 

Example 1.6.1. By Exercise 1.6.8, every contractible 1 -complex 
is collapsible. We now give an example of a contractible 2-complex B 
(that is, the identity map of B onto itself is homotopic to a constant map) 
that is not collapsible. The  complex B is known as Bing’s house with 
two rooms. 

Pictured in Fig. 1.6.3 we have a block of wood, 1, with one termite 
situated on the front and another situated on the back. Now each of 
these termites is told that he can eat into this block of wood, however 
is warned that if he ever eats a hole through the wood he will fall and 
be killed. The  front termite is told to start at point x and eat his way 
directly to the back half of the block of wood and then to eat all of the 
back half that he can. Likewise, the rear termite is told to eat his way 
directly to the front half and then to eat all of it that he can. At the right 
is pictured B which is what is left after the termites have finished their 
meal. I n  that picture, A, and A, are squares with an open square 

EXERCISE 1.6.8. 

S 
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Figure 1.6.3 

removed, A, is a square with two open squares removed, S, and S, are 
square cylinders, and Fl and F, are rectangular disks. 

As the termites ate their way into the wood they described a retraction 
(in fact, a strong deformation retraction) of13 onto B.  I t  is trivial to prove 
that any retract of a contractible space is contractible (for instance, see 
p. 156, Theorem 4.11 of [Hocking and Young, 13). Hence, since I 3  is 
contractible, B is contractible. However, no matter how you triangulate 
B it will not be collapsible because there can be no free I-simplex to get 
started. (For other uses of Bing’s house with two rooms see [Glaser, 21 
and [Bing, 31.) 

Give an example of a subcomplex L of a complex K such 
that K < 0 but such that L is not simplicially collapsible. 

We now imitate for polyhedra the above definition of collapsing for 
complexes. Let X and Y be polyhedra with Y C X .  We say that there is 
an elementary collapse from X to Y if there is a PL n-ball Bn and a 
PL (n - 1)-ball Bn-l C Bd Bn such that X = Y u Bn and Y n Bn = 
Bn-l (see Fig. 1.6.4). We may describe this elementary collapse by saying, 
“We collapse Bn onto Bn-l”. 

EXERCISE 1.6.9. 

Figure 1.6.4 
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The  polyhedron X collapses to the polyhedron Y ,  X L Y ,  if there 
is a finite sequence of elementary collapses going from X to Y.  We say 
that X is collapsible, X L 0, if it collapses to a point. (For example, 
every PL ball is collapsible. Indeed, we shall see from the regular 
neighborhood theorem that this fact characterizes balls among PL 
manifolds.) Finally, we say that the complex K collapses to the complex L,  
written K L L,  if I K I L I L I .  It is obvious that K 3 L implies I( L L, 
however we will point out in the following example that the converse is 
false. 

We say that a triangulation T of an n-cell can be 
shelled if the n-simplexes of T can be ordered a, , a2 ,..., ak so that for 
each integer m < K, u, {J 1 . 7 ~ ~ ~ ~  u .*.  u ak is an n-cell. Thus, if a 
triangulation of an n-cell can be shelled then it is collapsible in a nice way. 

We now give an example due to Bing of a triangulation of a 3-cell that 
cannot be shelled. This example appeares as Example 2 of [Bing, 31. 
Consider the cube with the plugged knotted hole shown in Fig. 1.6.5. 

Example 1.6.2. 

,Plug = C '  

/ 

C 

. 
/ 

Figure 1.6.5 

The object is topologically a cube since the hole is plugged at the upper 
end with a small cube C' and so may be viewed as a 3-ball minus a 3-ball 
which hits its boundary in a 2-ball. The  resulting 3-cell C may easily be 
triangulated so that the edges of C' are I-simplexes of the triangulation, 

Consider a simple closed curve J made up of a spanning segment of C, 
which is an edge of C', and a polygonal arc of Bd C. Then, J is knotted 
as we shall prove in Chapter 2. If we were to start shelling the triangu- 
lation of C, it is easy to see that at each stage there would be a knotted 
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simple closed curve which lies, except possibly for one spanning simplex, 
on the boundary of the resulting 3-cell. It follows that the triangulation 
of C cannot be shelled for at the last stage there could be no such simple 
closed curve. 

Although, it is not immediately obvious that the above triangulation 
is collapsible, in Example 3 of [Bing, 31, it is stated that a similar example 
with two knots instead of one will yield a noncollapsible example. In  
fact, Bing states that he can show that for each integer n there is a 
triangulation of a cube whose nth barycentric subdivision is not collap- 
sible. The  proof of this was written out in [Goodrick, 13. Goodrick’s 
proof that one can also obtain such triangulations for In, n > 3, by 
taking suspensions is incorrect. I n  [Lickorish and Martin, I ]  it is shown 
that Bing’s result is in some sense the best possible. 

Even though K L L does not imply K < L, the following result 
usually circumvents any difficulty. (This is Theorem 4 of [Zeeman, I] 
and Theorem III.6(W) of [Glaser, 31. A particularly nice proof is given 
in [Cohen, 41.) 

Theorem 1.6.3. If K and L are complexes such that K L L, then there 
is a subdivision K ,  of K such that K ,  2 L ,  (where L ,  is the induced 
subdivision of L). 

For example, every combinatorial ball (that is, triangulated PL ball) 
has a subdivision which is simplicially collapsible. 

Lemma 1.6.2. If X and Y are polyhedra such that X L Y ,  then Y is 
a PL deformation retract of X .  

By Theorem 1.6.3, there is a triangulation (K ,  L) of the PL 
pair (X, Y) such that K < L. The  lemma now follows easily by induction 
on the number of elementary simplicia1 collapses in K < L, it being 
obvious if K < L consists of a single elementary collapse. 

PROOF. 

Lemma 1.6.3. If P and Z are subpolyhedra of a polyhedron Q where 
Q L P, then there is a subpolyhedron A of Q such that 2 C P u A,  
Q l  P u A \  P a n d d i m A < d i m Z +  1. 

PROOF. By Theorem 1.6.3, there is a triangulation ( K ,  L, N )  of 
(Q, P, 2) for which we have a sequence of elementary collapses as 
follows 

K = K,. L K,.-l L *.. < KO = L. 
S S 

Suppose that Ki = Kt-l u vi * a, u u6 for i = 1, ..., Y .  We may 
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assume that dim o, * ui 2 dim ot-l * 
that 

for i = 1, ..., r ,  for suppose 

Ki = Ki-1 U V ,  * ~i U ~i L Ki-1 = Ki-2 u ~ i - 1  * ~ i - 1  u ~ i - 1  L Ki-2 

and dim wi * a, < dim v , - ~  * u,-~ . Then, o, * Bd ui C Ki-, and so 
K,-, v wi * u, U ui is a subcomplex of Ki . Since 

Ki = (KiP2 U ~i * ai u u,) U ~ i - ~  * U ui-l , 

it follows that we can reorder the above collapse to be 

K ,  L Ki-z u v, j ,  a, u ai L Ki-2 . 
Let j < r be the largest integer such that 

Kj = Kj-1 u ~j * ~j u aj L Kj-1 

and dim uj = dim Z. Then, A = Cl(l K j  I - I KO I) obviously has the 
desired properties. 

Lemma 1.6.4. Let C, P, and Xx be polyhedra such that C L P. 
Then, there is a subpolyhedron X, of C u X such that P C X, , C u X L X ,  
and dim Cl(X,, - P) < dim X = x. 

PROOF. By Theorem 1.t.3, there is a triangulation (K, L, N) of 
(C u X, C, P) such that L N. By the proof of the above lemma, we 
can assume the sequence of elementary simplicia1 collapses is in order of 
nonincreasing dimension. We claim that it is possible to perform all of 
those of dimension greater than x on the complex C u X, collapsing it 
to a subcomplex which we call X ,  such that dim X ,  = x. There is no 
trouble during collapses of dimensions greater than x + I ,  because X 
cannot get in the way. Also, there is no trouble in performing (x + 1)- 
dimensional collapses, because the free face in such a collapse, if it 
belongs to X, will be a principal simplex in X. 

EXERCISE 1.6.10. Show that a connected PL n-manifold with nonempty 
boundary collapses onto some (n - 1)-subpolyhedron. (Hint: Use Corollary 
1.6.3.) 

If K C J are complexes, we say that K is full in J if no simplex of 
J - K has all of its vertices in K. 

EXERCISE 1.6.11. (a) If K C J and If1) is a first derived subdivision of J ,  
then K( l )  is full in (b) If K is full in J and J* is a subdivision of J ,  then K ,  
is full in J* . 
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If J is a complex and X C I J 1, then the simplicia1 neighborhood 
N ( X ,  J )  of X in Jis theminimal subcomplex of ]containing allsimplexes 
of J that hit X .  

Suppose that P is a polyhedron in the P L  n-manifold M. Let M, be a 
polyhedron in M which contains a topological neighborhood in M of P.  
If M is compact, pick M, = M. Let ( J ,  K )  be a triangulation of the pair 
( M ,  , P) such that K is full in J.  If 1") is a first derived subdivision of J ,  
then the polyhedron 1 N(P,  j(l))I is called a derived neighborhood 
of P in M. It follows from Exercise 1.6.1 la that if (1, K )  is any triangu- 
lation of ( M , ,  P )  and is a second derived subdivision of J ,  then 
I N ( P ,  J @ ) ) I  is a derived neighborhood of P in M .  (We will see in the 
regular neighborhood theorem below that a derived neighborhood of P 
in M is a PL n-manifold which collapses to P.) 

If P is a polyhedron, by a PL isotopy of P is meant a PL homeo- 
morphism H of P x I onto P x I ( I  = [0, 11 here) which is level 
preserving; that is, H(P x t )  = P x t for each t E I .  Let the PL  
homeomorphism H,: P -++ P be defined by H(x, t )  = (H,(x), t) for 
each x E P,  t E I .  Then, H is also called a PL isotopy between H,  and 
H ,  . We call H an ambient isotopy if H, = 1. Finally, if X ,  Y ,  2 C P, 
then X and Y are said to be ambient isotopic leaving 2 fixed if there 
is an ambient isotopy H of P cuch that H,(X) = Y and H ,  1 2 = 1 for 
all t E I. 

Let P be a polyhedron in the P L  n-manifold M. Then a regular 
neighborhood of P in M is a polyhedron N such that 

(a) N is a closed neighborhood of P in M ,  
(b) N is a PL n-manifold, and 
(c) N L P. 
The  existence and uniqueness properties of regular neighborhoods 

are given in the following theorem due to Whitehead [Whitehead, 11 
which appears as Theorem 8 of [Zeeman, 11, Theorems II.15n and 
II.16n of [Glaser, 31, and Theorem 2.11 of [Hudson, I]. 

Regular Neighborhood Theorem 1.6.4. 

1. (Existence). 

2. (Uniqueness). 

If P is a polyhedron in 
the PL manifold M ,  then 

Any derived neighborhood of P in M is a regular 
neighborhood of P in M. 

If N ,  and N ,  are any two regular neighborhoods 
of P in M ,  then there is a PL homeomorphism h of N ,  onto N ,  such that 

If P C Int M ,  then any two regular neighborhoods of 
h l P = l .  

3. (Uniqueness). 
P in Int M are ambient isotopic leaving P u Bd Mfixed. 
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Corollary 1.6.4. 

PROOF. 

Every collapsible P L  n-manifold M is an n-ball. 

If p is a point to which M collapses, then M is a regular 
neighborhood of p .  Let K be a triangulation of M which has p as a 
vertex. Then, St(p,  K )  = p * Lk(p, K )  collapses to p by Exercise 
1.6.8 and so is also a regular neighborhood of p in M .  But, then M and 
St( p ,  K )  are PL homeomorphic by Part 2 of Theorem 1.6.4, 

Give a proof using the regular neighborhood theorem and 
also a direct proof of the following fact: Let M n  be a connected PL n-manifold 
without boundary and let Q C P be polyhedra in M such that P L Q. Then, 
given an open subset U of M such that Q C U there is an ambient isotopy e, 
of M such that P C el( U )  and e ,  = 1 outside some compact subset of M and 
onQ. [Hint for the direct proof: Let (K ,  L )  triangulate(P,Q)so that K simplicially 
collapses to L. By induction on the number of elementary collapses, you need 
only consider the case of one elementary collapse from K to L, pushing 
A = CI * B to a * aB as in the definition of elementary simplicia1 collapse. 
By hypothesis U contains L, and also contains a neighborhood of a * aB in A. 
Therefore, in the closed star of B, you can perform an elementary isotopy 
(keeping the boundary of the star, and everything outside, fixed), that stretches 
this neighborhood over A.] 

EXERCISE 1.6.12. 

C. Relative Regular Neighborhoods 

Our discussion of relative regular neighborhoods will be based on 
[Hudson and Zeeman, 11, [Tindell, 21, [Husch, 11 and [Cohen, 11. 
Relative regular neighborhoods are like air conditioning, power steering, 
and color T V  in the sense that once one gets accustomed to using them, 
it is difficult to manage without them. Hudson and Zeeman [l] were the 
first to relativize the concept of regular neighborhoods. Unfortunately, 
their work contained an error as was evidenced by an example of 
Tindell [2]. However, Husch [l] formulated a correct version of Hudson 
and Zeeman's work. Finally, Cohen [l] conceived a more general notion 
of relative regular neighborhoods than that of Hudson and Zeeman and 
developed a very useful theory of his relative regular neighborhoods. 

If X and Y are subpolyhedra of some larger polyhedron (see Fig. 1.6.6), 
then 

X, = CI(X - Y )  and Y ,  = Cl(X - Y )  n Y. 

Given two subcomplexes K ,  L of some larger complex, let KR and LR 
be defined in the obvious way. We say that K is link-collapsible on L 
if Lk(A, KR)  is collapsible for each simplex A in LR . Given two subpoly- 
hedra X, Y of some larger polyhedron, we say that X is link-collapsible 
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on Y if for some triangulation (K, L) of ( X ,  Y) we have K link-collap- 
sible on L. 

Figure 1.6.6 

EXERCISE 1.6.13. Show that the definition of link-collapsibility for polyhedra 
is independent of the triangulation. 

Example 1.6.3 

(a) Any polyhedron is link-collapsible on itself and on the empty set. 
(b) A simplex is link-collapsible on any subcomplex. 
(c) A PL manifold is link-collapsible on its boundary and on any 

(d) A PL manifold is not link-collapsible on an interior point. 
(e) A cone is link-collapsible on its base, and on any subpolyhedron 

of the base. 
(f) X is link-collapsible on Y if and only if X, is link-collapsible 

on Y R .  

Let X, Y, N be compact polyhedra in the PL manifold Mm (see 
Fig. 1.6.7). We say that N is a HZ-regular neighborhood of X mod Y 
in M if 

(1) N is an rn-manifold, 
(2) 

subpolyhedron of the boundary. 

N is a topological neighborhood of X - Y in M ,  and 

N n Y = aN n Y = Y R  , 
(3) N L  x,. 

We say that N meets the boundary regularly if, further 

X n aM mod Y n aM in aM. 
(4) C l ( ( N  n aM) - Y) is a HZ-regular neighborhood of 

If Nl is another HZ-regular neighborhood of X mod Y in M, we say 
that Nl is smaller than N if N contains a topological neighborhood of 
Nl - Y in M. 
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Y 

Figure 1.6.7 

REMARK 1.6.1. If we put Y = 0 in the relative definition, then we recover 
the absolute definition, and so the relative definition is a generalization. 

REMARK 1.6.2. Any HZ-regular neighborhood of X mod Y is also an HZ- 
regular neighborhood of X R  mod Y, , but not conversely in general, because of 
Condition 2. 

REMARK 1.6.3. If M is unbounded Condition 4 is vacuous, and so trivially 
true. If M is bounded and X C Int M, then Condition 4 is the same as saying 
N C Int M .  

REMARK 1.6.4. In Condition 4 the term Cl((N n aM) - Y) is necessary 
instead of N n aM in order to allow possibilities such as the one indicated in 
Fig. 1.6.8. 

Figure 1.6.8 

Suppose that X and Y are polyhedra in the PL manifold M .  A second 
derived neighborhood N of X mod Y in M is constructed as follows: 
choose a triangulation J of M that contains subcomplexes triangulating 
X and Y; then choose a second derived complex J ( z )  of J and define 
N = I N(X - Y ,  J ( 2 ) ) 1 .  
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Let X ,  Y be compact polyhedra in a P L  manifold M ,  and let N 
be a regular neighborhood of X mod Y in M .  

(p) N satisfies condition /3 if there exists a triangulation J of M 
containing subcomplexes G, K ,  and L which triangulate N ,  X ,  and Y ,  
respectively such that 

Lk(a, G) L Lk(a, KR) 

for each u in L R  . 
If N satisfies condition y if X is a manifold, Y is the boundary 

of X, and there exists a triangulation J of M containing subcomplexes 
G, K,  and L which triangulate N ,  X ,  and Y ,  respectively such that the 
ball pairs (Lk(u, G), Lk(u, K ) )  are unknotted for each vertex 0 of L R  . 

( y )  

HZ-Relative Regular Neighborhood Theorem 1.6.5. Let X and 
Y be polyhedra in the PL manifold M where X is link-collapsible on Y ,  
then 

A n y  second derived neighborhood N of X mod Y in M 
is a HZ-regular neighborhood of X mod Y in M .  If, further, X n aM 
is link-collapsible on Y n aM, then N meets the boundary regularly. 

Let N ,  and N ,  be regular neighborhoods of X mod Y 
in M such that there is a triangulation J of M for which Nl and N ,  satisfy 
condition p;  then there is a smaller regular neighborhood N3 and a PL 
homeomorphism of Nl onto N ,  keeping N3 fixed. Further, the homeomor- 
phism can be realized by an isotopy in M moving Nl onto N ,  through a 
continuous family of regular neighborhoods and keeping N3 fixed. 

3. (Uniqueness). Let Q C M be a compact PL manifold. (If 
Q n Bd M # 0, we require that Bd Q C Bd M.) Let N ,  and N ,  be two 
regular neighborhoods of Q mod Bd Q in M which meet the boundary 
regularly, and suppose that N ,  and N ,  satisfy condition y .  Let P 
be the closure of the complement of a second derived neighborhood of 
N ,  v N ,  mod Bd Q in M .  Then, there exists an ambient isotopy of M 
moving N ,  onto N ,  and keeping PJixed. 

Hudson and Zeeman’s original statement of 2 above did not include 
the requirement that there be a triangulation J of M for which N ,  and 
N ,  satisfy condition /3. The following example shows that that require- 
ment is necessary. (Since this example uses a couple of elementary 
concepts not discussed until later, it may be skipped for the time being 
and considered later.) 

1. (Existence). 

2. (Uniqueness). 

Example 1.6.4 (Tindell). Let (B3, B1) be a knotted (3, 1)-ball pair 
in E3 and let B4 = a * B3 and B2 = a t B1 where a = (0, 0, 0, 1) E E4. 
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The  (4, 2) ball pair (B4, B2) is locally knotted at the vertex a [that is, the 
first local homotopy group, introduced in Section 2.3, is bad] and hence 
(B4,  B2) is knotted [that is, is not homeomorphic to the pair (I4, I”]. 
However, it is easy to see that B2 is unknotted in E4 [that is, there is an 
onto P L  homeomorphism h:  E4 -+ E4 such that h(B2)  = A is a 2- 
simplex]. B4 collapses conewise to B2 so that h(B4)  collapses to h(B2) = A .  
Also, ad C h( aB4) and Int d C h(1nt B4), so that h(B4)  is an HZ-regular 
neighborhood of A mod ad in E4. Let Z be the two-fold suspension of 
d in E4; then Z is an HZ-regular neighborhood of A mod ad in E4. If 
the first uniqueness result of Theorem 1.6.5 were true without condition 
/3, there would be a homeomorphism carrying (h(B4) ,  A )  onto (Z, d) 
which implies that (h(B4),  A )  = (h(B4) ,  h(B2))  is an unknotted ball pair. 
This is clearly false since it is a homeomorphism of the knotted ball 
pair (B4,  B2).  This type of argument can be carried out in En for every 
n 3 4 so the t3 condition is necessary for dimensions greater than three. 

We will now discuss Cohen’s conception of relative regular neighbor- 
hoods. HZ-relative regular neighborhoods were of polyhedra in PL 
manifolds. Now we consider regular neighborhoods of X mod Y in Z 
where X and Y are (possibly infinite) polyhedra in the (possibly infinite) 
polyhedron Z .  V is defined to be a C-regular neighborhood of X 
mod Y in Z if J is a complex containing K and L as full subcomplexes 
and h: (I J 1, I K 1, 1 L I) --f (Z ,  X ,  Y )  is a PL homeomorphism such 
that V = h ( [  N(1 K - L I ,  J ’ ) ] ) .  

C-Relative Regular Neighborhood Theorem 1.6.6. Let X and Y 
be polyhedra in the polyhedron Z and let J be a complex containing 
K and L as subcomplexes and h: ( 1  J I, 1 K I, I L I )  + (2, X ,  Y )  a P L  
homeomorphism. 

By definition, h(l N(l K - L I, J ( 2 ) ) l )  is a C-regular 
neighborhood of X mod Y in Z .  

If V and W are C-regular neighborhoods of X mod Y 
in 2, then there is an ambient isotopy G:  Z x I -+ Z x I such that 

1. 

2. 

(Existence). 

(Uniqueness). 

(a) Go = 1, 
(b) 
(c) G,(V)  = W. 

REMARK 1.6.5. 

G / ( X u  Y )  x I = 1, 

The following fact is an interesting unpublished result of 
Cohen concerning C-relative regular neighborhoods: If Y C X are polyhedra, 
then a C-regular neighborhood of X x 0 mod Y x 0 in X x Z is topologically 
homeomorphic to 

XR x I / [ ( Y ,  t) = ( y ,  0 )  if y E Y R ,  0 ,< < 11. 
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REMARK 1.6.6. For more about C-relative regular neighborhoods, see 
Lemmas 5.3.2 and 5.3.3. 

D. General Position 

In  order to develop a “feeling” for general position arguments, we 
first prove a simple embedding theorem (Theorem 1.6.8). This theorem 
will follow as a corollary of our main general position theorem (Theorem 
1.6.11). I t  is also a special case of an embedding theorem for n-dimen- 
sional separable metric spaces (see Theorem V3 [Hurewicz and 
Wallman, 13). I t  is probably impossible to state a general position theorem 
that will apply to all situations involving general position, thus it is 
important to understand the techniques of general position. However, 
the statement of our general position theorem will suffice for many 
situations. It is often thought (for example, Chapter IV, Part C of 
[Glaser, 31) that Corollary 1.6.5 suffices to do Stallings’ engulfing, 
however, in Chapter 4 we shall find it necessary to use the full power of 
our main general position theorem (Theorem 1.6.10) to do Stallings’ 
engulfing. 

For other discussions of general position see Chapter 6 of [Zeeman, 11, 
Chapter VI of [Hudson, 11, Chapter IV part A of [Glaser, 31 and 
[Henderson, I]. 

A set of points X in En is said to be in general position in 
En if no r + 2 points of X lie on an r-dimensional hyperplane, 
r = 1, 2, ..., n - I .  That is, every subset of X with less than n + 2 
points is pointwise independent. 

Theorem 1.6.7. 

PROOF. Let 

En contains a dense set of points in general position. 

be a countable dense subset of En, and define 
y 1  = xl. Inductively having chosen points y l ,  ..., yk-l in general 
position such that dist(xi , y i )  < l / i  for i < k ,  choose a point Y k  within 
1/k of x k  such that Y k  does not lie on any of the finitely many hyper- 
planes of En which are determined by subsets containing at most n of 
the points y1  , ..., yka1 . The sequence { yd}r=l defined inductively in this 
manner is then a dense set of points in general position in En. 

m 

Theorem 1.6.8. If K is a k-complex, then there is a homeomorphism 
f: 1 K 1 + E2k+1 which is linear on each simplex of K .  

Let x1 , ..., x p  be the vertices of K ,  and use Theorem 1.6.7 to 
find points y 1  , ..., y p  in general position in E2k+1. Define f (x2) = yi and 

PROOF. 
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extend f to 1 K I linearly over each simplex of K .  Since the image underf 
of the vertices of any simplex of K span a simplex of the same dimension 
in EZk+l, it follows that f is one-to-one on each simplex of K .  

Now suppose that x and y are two points of I K 1 not lying in a single 
simplex of K .  If u and T are simplexes of K containing x and y, respec- 
tively, then the union X of their vertices contains at most 2k + 2 
vertices. Since the points y l ,  ..., y p  are in general position in E P k f l ,  it 
follows, that the set f ( X )  spans a simplex in EZk+l. Then, f ( x )  and 
f(y) lie on the faces f(u)  and f ( ~ )  of 7 and neither lies on the face 
f(u)  n f ( 7 ) .  It follows that f ( x )  # f ( y ) .  Thus, f is one-to-one and is 
therefore a homeomorphism onto f( I K 1). 

The following example indicates that the dimension 2k + 1 in 
Theorem 1.6.8 is the best possible. (Flores [l] establishes a generali- 
zation of Theorem 1.6.7 by showing that the complex consisting of all 
faces of dimension \< n of a (2n + 2)-simplex cannot be embedded 
in EZn.) 

The 1-skeleton of a 4-simplex cannot be topologically 
embedded in E2. 

It suffices to show that five points in the plane cannot each 
be connected to every other point by an arc such that the arcs intersect 
only in end-points (see Fig. 1.6.9). We will start with the only two 

Example 1.6.5. 

PROOF. 

Figure 1.6.9 

possible cases (by the Jordan curve theorem) of three points and their 
arcs union the other two points. We will then proceed to add arcs in 
every possible manner (restrictions imposed by the Jordan curve 
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theorem) until we reach a stage where it becomes apparent that the 
necessary structure cannot be formed (again by the Jordan curve 
theorem). (Actually some of the restrictions mentioned above are 
imposed by the so-called &curve theorem which is a consequence of the 
Jordan curve theorem.) 

Given polyhedra P and Q and a map f: P -+ Q, define 

S ' ( f )  = (x E P I f - ' f ( x )  # x}. 

Then, the closure S(f) = C1 S ' ( f )  is called the singular set of f .  
The basic idea of general position approximation is to replace a given 
PL map with one whose singular set is of minimal dimension. 

Theorem 1.6.9. I f f :  P -+ Q is a PL map, then S( f) is a subpoly- 
hedron of P. 

PROOF. Let K and L be triangulations of P and Q such that f: K -+ L 
is simplicial, and consider a simplex A of K such that Int A n S ' ( f )  # 8. 
Then, f-'f(Int A)  is a disjoint union of open simplexes of K. Now either 
f I A is degenerate (that is, dim f ( A )  < dim A )  or there is another 
simplex B E K with f(A) = f(B). In  either case it follows that 
Int A C S ' ( f ) .  Thus, S ' ( f )  is a union of interiors of simplexes of K and 
so it follows that S(f) = C1 S ' ( f )  is the polyhedron of a subcomplex 
of K. 

A linear map f: K + Q of a complex K into a complex Q is non- 
degenerate if it embeds each simplex of K. 

General Position Theorem 1.6.10. Part 1. Let f: K -+ M be a 
linear map of the k-complex K into the unbounded combinatorial n-mani- 
fold M where k < n. Let L be a subcomplex of K such that f 1 L is 
nondegenerate. Then, given E > 0, there are subdivisions (K' ,  L')  of 
( K ,  L )  and M'  of M and a nondegenerate linear map g :  K' -+ M' such 
that g is  c-homotopic to f through a homotopy which agrees with f on 1 L I 
throughout. 

Part 2. Let f: K -+ M be a PL map of the k-complex K into the 
unbounded combinatorial n-manifold M which embeds each simplex of K. 
Let L be a subcomplex of K such that f I I L 1 is  an embedding. Then, given 
E > 0, there is a P L  map (not necessarily linear) g: K -+ M such that 

(a) g l l L I  = f l I L I ,  
(b) g is PL E-homotopic to f leaving f ( l  L /)$xed, 
(c) g embeds each simplex of K and 

dim S(g I cr u T )  < dim u + dim T - n 
for each two simplexes u, r E K .  



1.6. Piecewise Linear Manifolds and Tools 29 

Corollary 1.6.5 (Common general position theorem). Let L be u 
p-dimensional subcomplex of the k-complex K such that dim( 1 K 1 - I L I )  = 
q. Let f: K -+ M be a P L  map of K into the unbounded combinatorial 
n-manifold M such that f I 1 L 1 is a PL homeomorphism. Then, given 
r > 0, there is a P L  map g: K -+ M such that 

(a) g l l L l  =fJILI ,  
(b) dist(g,f) < € 3  

(c) 

PROOF OF PART 1. Let { ~ ~ } j " = ~  be the vertices of M and let 
Bj = St(vj , M ) .  Then, M = Ujz1 Int Bj  . By Theorem 1.4.2, there is 
a subdivision ( K O ,  Lo) of ( K ,  L)  such that if u E KO then f ( u )  C Int Bi 
for somej .  Let {u~}:=~ enumerate the simplexes of KO - Lo in order of 
nondecreasing dimension and let Li = LO u {ul ,  ..., ui}, i > 0.  Then, 
Li is a subcomplex of K O .  We are going to inductively define linear 
maps f i  = Ki  + M ,  for subdivisions Ki of K O ,  i = 0, 1, ..., r ,  such 
that 

(1) f I Li is nondegenerate (Li is the subcomplex of Ki trian- 

(2) fi is (E/r)-homotopic to fiPl keeping f( 1 L I) fixed, 
( 3 )  if u E KO , then fi(u) C Int Bj for somej. 
Start with fo = f and KO = K and suppose that fiPl is defined. Then, 

fiPl(ui) C Int Bj for somej. Let Kli be a subdivision of KiP1 such that 
N ( u i ,  Kli) C fi-l(Int Bj) .  Let hi: B j  +In be a PL homeomorphism. 
Let T = N(ui , Kli), and L,  = {u E T 1 u C 1 LiPl I}, 

Fr(T) = {u E T 1 u C frontierIKI I T I} 

dim S( g) < k + q - n. 

m 

gulating Li), 

and ui* = {u E T I u C ui}. 

T' subdivides T, such that 
Suppose that for 6 > 0, we can find a linear map gi: T' + In, where 

(1) gi I a;* is nondegenerate, and 
(2) gi is &homotopic to hj f i- l  I T ,  keeping L ,  u Fr( T )  fixed. 

This will complete the inductive step, for by picking 6 small enough, f, 
can be taken to be the extension of hT'g, to I K I by the identity. Clearly, 
fi will be linear for an appropriate subdivision Ki of Kli and f 1 Li will 
be nondegenerate. 

We now obtain gi . Let T' be a subdivision of T on which hj f i-l is 
linear and such that L ,  u Fr(T) is triangulated as a full subcomplex. 
Let wl, ..., w,. denote the vertices of T' in L, u Fr(T) and let 
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w,.+~ ,..., w, denote the remaining vertices of T‘ .  Define xk by 
fi-l(wk) for k < r. Having defined w1 ,..., wr , ..., wk (k r), choose a 
point xk+l nearfi-l(wk+l) and not lying on any of the proper hyperplanes 
of En determined by the points x1 ,..., xk . Then, let g(wk) = xk for k < s 
and define gi: T’ -+ In by linear extension over the simplexes of T‘. 
It is easy to see that this is the desired map. 

EXERCISE 1.6.14. Prove Part 2 of Theorem 1.6.10. [Hint: The proof is similar 
to that of Part 1 and uses the fact that if Vl and V, are finite-dimensional sub- 
spaces of a vector space V ,  then Vl + V ,  is finite dimensional and 

dim Vl + dim V ,  = dim( Vl n V,) + dim( V ,  + V2). 

Try the case M = En first.] 

EXERCISE 1.6.15. Let S p  and S* be disjoint PL spheres in En . If 
n 2 p + q + 2, show that SP and S g  are unlinked in the sense that there is a 
n-ball Bn C E n  with SP C Bn and SQ C En - Bn. [Hint: Embed a cone on one 
of the spheres. All cases except the case p = q = in - 1, n even, follows from 
Corollary 1.6.5. The exceptional case will follow from an easy argument.] 

EXERCISE 1.6.16. Let Po and Pl be PL homeomorphic k-dimensional 
polyhedra in En, with n 2k + 3. If No and Nl are regular neighborhoods of 
Po and Pl , respectively, show that No and Nl are PL homeomorphic. [Hint: For 
the case No n Nl = 0 define an embedding f: Po x I -+ En such that 
!(Po x i) = Pi, i = 0, 1.1 

E. Relative Simplicia1 Approximation 

The absolute simplicial approximation theorem, which dates back 
to Alexander [I], states that there is a simplicial approximation g to any 
given continuous map f between two finite simplicial complexes. (For a 
proof see [Hocking and Young, 1, p. 2101 or [Singer and Thorpe, 1, 
p. 811.) The relative theorem permits one to leave f unchanged on any 
subcomplex on which f happens to already be simplicial. The  usual 
technique of relative simplicial approximation was developed by Zeeman 
[2] and is similar to our proof of Part 1 of Theorem 1.6.11. (Also, 
Zeeman’s proof as well as Zeeman’s example, which shows that the 
usual techniques for proving the absolute simplicial approximation 
theorem do not suffice to prove the relative simplicial approximation 
theorem, appear in Chapter IV of [Glaser, 31.) Here we will content 
outselves by deducing the relative simplicial approximation theorem as 
a consequence of a weak form of the existence part of the regular neigh- 
borhood theorem. 



1.6. Piecewise Linear Manifolds and Tools 31 

Relative Simplicia1 Approximation Theorem 1.6.11. Let P, Q, 
and R be polyhedra with Q C P and let f: P -+ R be a continuous map such 
that f I Q is  PL. Then, given E > 0, there is a PL map g:  P + R such that 

(1) f IQ = g l Q ,  
(2) dist(f, g) < E ,  and 
( 3 )  f and g are homotopic keeping Q fixed. 

PROOF. By Theorem 1.6.8, we may assume that R C En for some n. 
Let N be a polyhedral neighborhood of R in En for which there is a PL 
retraction r :  N + R. (Such a neighborhood N may be obtained from the 
existence part of Theorem 1.6.4 and Lemma 1.6.2.) Let E’ < E be small 
enough that the E’-neighborhood of R lies in N. By the uniform con- 
tinuity of r ,  there is a S > 0 such that for each x E R the S-neighborhood 
N,(x) C N and diam r(N,(x)) < E’. By uniform continuity off, choose 
7) > 0 such that each subset of P of diameter less than 7 is mapped 
by f onto a set of diameter less than S/2. Let (K, L)  be a triangulation of 
(P, Q) such that K has mesh less than 7. If f1: P + En is the linear map 
of K which agrees with f on the vertices of K, then 

dist(f,f’) < 8, f l I Q  = f l Q  and f l ( P ) C N .  

Let g = r f  l: P 4 R. Certainly, dist(f, g )  < E’ < E and g I Q = f I Q. 
Let h: P x I + N be the obvious homotopy between f and g such that 
h(x x I) is the line segment (possibly degenerate) from f ( x )  to g(x) for 
each x E P. Then, 

H = r h : P  x I + R  

is the required homotopy between f and g. 

Corollary 1.6.6. Let P be a k-polyhedron, Q a subpolyhedron and M 
a PL n-manifold with n 3 2k + 1. Then, given E > 0 and a map 
f: P + Int M such that f 1 Q is a PL embedding, there is a PL embedding 
g:  P + Int M with dist(f, g )  < E and f I Q = g I Q. 

The  above corollary follows from Theorem 1.6.11 and Theorem 
1.6.10. 

F. Handlebodies 

Handlebody Decomposition Theorem 1.6.12. Let Mn be an n-dimen- 
sionaZPL manifold and let E > 0 begiven. Then, M = U:=, Hf where 

(Hj , Hi n (c H j )  (Inl Bd Ik  x Pk) 
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for  some k < n, for  each j = 0, 1, ..., r .  Furthermore, diam Hi < E for 
j = 0, 1, ..., r .  (H3 is called a handle of index k.) 

Let K be a triangulation of M and let K" be the second 
barycentric subdivision of K. Then, K and K" are combinatorial 
manifolds by Theorem 1.6.2. Let u,, , u1 , ..., u,. be the simplexes of K 
in order of nondecreasing dimension. Let Hi = St(6,, K"),  when 6, 
is the barycenter of ui . Then each Hi is an n-ball. It follows from our 
construction and the way we ordered the simplexes u, that 

PROOF. 

j -1  

H ,  n u H i  = St(&, , K")  n N(Bd ui , K")  = N(Lk(6, , u;), Lk(ai , K")).  

By pseudo-radial projection from a,, there is a PL  homeomorphism 
h, of (Lk(ai, K"),  Lk(G,, uj")) onto (Bd ui * Lk(u,, K ) ,  Bd uj).  

First, we assume that uj is a k-simplex contained in Int M .  Let 
Ynwk(Bd I k )  be an (n - k)-suspension of Bd Ik which is contained in In 
and let Zn-k-l be the (n - k - 1)-suspension sphere [that is, 2Fk-- l  is 
obtained by taking the (n - k - 1)-suspension of the first pair of 
suspension points where all suspension points are chosen as before]. 
(See Fig. 1.6.10.) Then, Yn-k(Bd Ik)  = Bd Ik J: Zn-!+l. Since 

i=O 

' 

Figure 1.6.10 

ui C Int M ,  it follows that Lk(o, , K )  is an (n - k - 1)-sphere by 
Lemma 1.6.1. Thus, by Exercise 1.6,4 we can construct a PL homeo- 
morphism h, which takes (Bd u3 * Lk(u, , K) ,  Bd uj , Lk(u, , K ) )  onto 
(Bd Ik t 2%-k-1 ,  Bd Ik, Zn-k-1). By pseudo-radial projection from the 
origin, we can get a PL homeomorphism h, which takes (Yn-"Bd Ik) ,  
Bd Ik) onto (Bd In, Bd Ik) .  Now consider the PL homeomorphism 
h,h,h,: (Lk(6, , K"), Lk(Gj , uj") )  -++ (Bd In, Bd Ik) .  Since N(Lk(ai , ail), 
Lk(6,, K")) is a regular neighborhood of Lk(6,, uj") in Lk(a3, K"),  by 
Theorem 1.6.4 (existence part), it follows that h3h2hl(N(Lk(6i , u,"), 
Lk(ei, K")))  is a regular neighborhood of Bd Ik in Bd In. Also, 
Bd I k  x In-k is a regular neighborhood of Bd Ik in Bd In. Hence, by 
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Theorem 1.6.4 (uniqueness part) there is a PL homeomorphism h, of 
(Bd In, Bd Ik) onto itself such that 

h4h3h2hl(N(Lk(6j , $), Lk(6, , K”)))  = Bd I‘ x In-h. 

Then, the conewise extension h:  St(ej , K ” )  ++In is the desired PL 
homeomorphism. 

Notice that Hi could be made arbitrarily small by using Theorem 
1.4.2 to make the mesh of K small. 

Complete the proof of Theorem 1.6.12, that is, consider the EXERCISE 1.6.17. 
case uj C Bd M .  

1.7. LOCAL FLATNESS, (PINCHED) COLLARS, 

A N D  (PINCHED) BICOLLARS 

I t  will turn out that many times we can show that two embeddings 
f and g of a space X into a space Y are equivalent if they both satisfy 
some “niceness” condition. In  the case X and Y are topological manifolds 
the niceness condition most often imposed is that of local flatness which 
we now define. An m-manifold M contained in the interior of an n- 
manifold N is locally flat at x E Int M ,  [x E Bd MI, if there is a 
neighborhood U of x in N such that ( U ,  U n M )  is homeo- 
morphic to (En ,  Em), [ (En,  E;”)]. An embedding f: M + N is proper 
if f (Bd M )  C Bd N and f(1nt M )  C Int N .  We say that ( M ,  N )  is a 
proper manifold pair if the inclusion of M into N is proper. If ( M ,  N )  
is a proper manifold pair, then M is locally flat x E Int M ,  [x E Bd MI,  
if there is a neighborhood U of x in N such that ( U ,  U n M )  is homeo- 
morphic to ( E m ,  Em), [(E+”, EY)]. An embedding f: M --+ N such that 
f ( M )  C Int N or such that f is proper is said to be locally flat at a point 
x E M if f ( M )  is locally flat at f (x). Embeddings and submanifolds are 
locally flat if they are locally flat at every point. 

Theorem 1.7.1 (Transitivity of local flatness). Let L,  M ,  and N 
be manifolds of dimensions I ,  m, and n, respectively. Suppose that either 
(1) L C Int M C Int N ,  (2) ( M ,  L )  is a proper manifold pair such that 
M C Int N ,  or ( 3 )  ( M ,  L )  and ( N ,  M )  are proper manifoldpairs. Then, if 
L is Iocallypat in M and M is localb flat in N ,  it follows that L is locally 
flat in N .  

PROOF. (We will show that L is locally flat in N at an arbitrary point 
p E Int L, and this proof works for all three situations. The  proofs for 
p E Bd L are modifications of this proof and are left as an exercise.) 
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Let U be a neighborhood o f p  in N such that there is a homeomorphism 
h,: ( U ,  U n M )  - (En, Em). Then, h,(L n U )  is locally flat in E m .  

Let V be a neighborhood of h,(p) in Em such that there is a homeo- 
morphism h,: (V ,  V n h,(L n U ) )  - (Em,  El). Define 

X2: (V x En-m, V n h,(L n U ) )  + (En, E E )  

to be the product extension of h, , Let h = h2hl .  Then, h-l(En) is the 
desired neighborhood of p such that (h-l(En), h-l(E") n L )  is homeo- 
morphic to (En, Ez) .  

EXERCISE 1.7.1. Prove Theorem 1.7.1 for each of the three cases when 
p E BdL. 

Theorem 1.7.2. If f: M k  -+ Int  Nn is a PL embedding of the PL 
k-manifold M into the PL n-manifold N ,  n - k # 2, then f is locallyflat. 

EXERCISE 1.7.2. Prove Theorem 1.7.2. To do so you may use the following 
two facts both of which will be proved later. 

Fact 1. Iff: I k  + En (or Sn) is a locally flat embedding, then there exists 
a homeomorphism h: En -H En such that hf: Ik  + En (or S") is the inclusion 
map. 

Iff: Sk + En (or Sn), n - k # 2, is a locally flat embedding, then 
there exists a homeomorphism h: En ++ En such that hfi Sk --+ En (or Sn) is 
the inclusion map. 

REMARK 1.7.1. 

Fact 2. 

We will show later (Example 2.3.2) that the PL disk in E4 
which is the cone from the origin over a trefoil knot in Bd Z4 is not locally flat 
in E4. Thus, Theorem 1.7.2 would be false without the hypothesis n - k # 2. 

Let X be a subspace of the topological space Y.  Then, X is said to be 
collared in Y if there is a homeomorphism h carrying X x [0, 1) onto 
an open neighborhood of X such that h(x,  0) = x for all x E X .  If X 
can be covered by a collection of open subsets (relative to X )  each of 
which is collared in Y ,  then X is locally collared in Y. If there is a 
homeomorphism h carrying X x (-1, 1) onto an open neighborhood 
of X such that h(x, 0) = x for all x E X ,  then X is bicollared in Y. 
Finally, if X can be covered by a collection of open subsets (relative to 
X )  each of which is bicollared in Y ,  then X is locally bicollared in Y. 

Show that the boundary of every manifold is locally collared. 

Let ( M ,  N )  be a proper manifold pair where N is n-dimen- 
sional and M is (n - 1)-dimensional. Show that M is locally flat in N if and only 
if it is locally bicollared in N .  

EXERCISE 1.7.3. 

EXERCISE 1.7.4. 
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EXERCISE 1.7.5. Give an example of a proper manifold pair ( M ,  N )  such that 
M is locally bicollared in N ,  but not bicollared. (Hint: Consider the center 
1 -sphere of a Mobius band. Construct higher-dimensional examples by crossing 
the Mobius band with (0, 1). Also consider the natural inclusion of each odd- 
dimensional projective space into the next higher even-dimensional projective 
space.) 

Although locally bicollared does not imply bicollared by the above 
exercise, the next theorem asserts that locally collared does imply 
collared. Our first proof of this theorem will be by techniques of 
[Brown, 3, 41 which were developed in the original proof. At the end 
of this section (Theorem 1.7.7) we will give a shorter and more recent 
proof developed by Connelly. Most readers might be well-advised to 
skip the proof of Theorem 1.7.3 for the time being, and go directly to 
the proof of Theorem 1.7.7. (Brown’s basic idea is to put the local collars 
together to get a collar, whereas Connelly’s idea is to add a collar to the 
manifold and then use the local collars to push that collar into the 
manifold.) 

Collaring Theorem 1.7.3 (Brown). If the manifold M is contained 
in the manifold N and M is locally collared in N ,  then M is collared in N .  

We will first assume the following two lemmas and prove Theorem 
1.7.3 and then we will prove the lemmas. 

Lemma 1.7.1. Suppose that the manifold M is contained in the 
manifold N .  If, { Ua}aPA is a pairwise disjoint collection of open subsets of 
M each of which is collared in N ,  then UaEA U, is collared in N .  

Lemma 1.7.2. Suppose that the manifold M is contained in the 
manifold N .  If M is the union of two open subsets U, and U ,  each of which 
is collared in N ,  then M is also collared in N .  

Proof of Theorem 1.7.3. (Notice that Theorem 1.7.3 follows from 
Lemma 1.7.2 in the case that M is compact. However, we have to do a 
little more work in the case that M is not compact. This proof is an 
adaptation and simplification of results of [Michael, 11 when reduced 
to the current situation.) 

For each point p E M ,  let U p  be an open set which is collared in N .  
Since M is a separable metric space, there is a countable subcover 
(0,) of the cover { Up}peM of M .  Let K,  = ub, Oi . By Lemma I .7.2, K,  
is collared in N .  Let V,  = {x E M I dist(x, M - K,) > l / n } .  Then, 
V, C C1 V,  C K ,  and certainly V,  is collared in N since it is an open 
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subset of K" which is collared. Let W ,  = Vl , W, = V, , W, = V 3 ,  
and W, = V,  - C1 V,-3 for n >, 4 (see Fig. 1.7.1). Each W, is 
collared in N since W, C V ,  C K ,  . Now the two collections of open sets 
{ W4n-l}E=l and { W4n+l}& are pairwise disjoint (see Exercise 1.7.6). 

IKW~K~I K 3  L ~ ' ' ' ~ K ~ I K ,  1 ~ g K y y . 7  - 

(1 ' 5 v: :,r 4' :I' 4 c ,AJ94 5- - 
Figure 1.7.1 

m m 
Hence, by Lemma 1.7.1, W4n-1 and W4,+1 are both collared 
in N .  But, M = (Un=l W4,-1) U W4n+l) (see Exercise 1.7.6) and 
so by Lemma 1.7.2 M is collared in N as desired. 

Show that the two collections { W4n-1}z=1 and { W4n,,}~=l 
of the above proof are pairwise disjoint and that 

m m 

EXERCISE 1.7.6. 

Proof of Lemma 1.7.1. Suppose that h, is the homeomorphism of 
U, x [0, 1) onto a neighborhood of U, in N such that h,(x,  0) = x for 
all x E U, . Let 

W, = h,(U, x [0, 1)) n x E N j dist(x, U,) < dist x, u U, . ( B#u 11 
Then, { W,}nsA is a pairwise disjoint collection of open subsets of N such 
that U, C W, C ha( U, x [0, 1)) for all a E A. Let 0 =UeEA We). 
Then, 0 is an open subset of M x [0, 1) such that UaeA U, x 0 C 9. 
Now define the continuous, positive, real-valued function g on UeEA U, 
as follows: 

g(x) = Min [ I ,  dist(x, (2 U, X [0, 1)) - O)] . 

Let r: UUEA U, x [0, 1) + 0 be the homeomorphism defined by 
T(x, t )  = (x, tg(x)). Let fa: U, x [0, 1) + N be defined by f , ( x ,  t )  = 
h, r (x ,  1) .  Then, h:  UmEA U, x [0, 1) --+ Ndefined by h 1 U, x [0, 1) =fa 
is the desired collaring of UeEA U, . 

Before proving Lemma 1.7.2, we will state a couple of preliminary 
definitions. 
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Let M be a manifold, let U be an open subset of M x 0 and let 
A: C l  U -+ [0, 11 be a continuous map such that A(x) = 0 if and only 
if x = C1 U - U. The  spindle neighborhood S( U ,  A) of U in 
M x [0, 1 )  is {(x, t )  E M  x [O, 1)1(x, 0) E U, t < A(x, 0)). It is easy 
to see that S( U ,  A) is a neighborhood of U in M x [0, I )  and that the 
spindle neighborhoods form a neighborhood basis for the neighborhoods 
of U in M x [O, 1). For, suppose that I/ is an open subset of M x [0, 1) 
containing U. Let A: D --t [0, I]  be defined by 

h(x, 0) = Min[dist((x, 0), C1 U - U ) ,  dist((x, 0), ( M  x [0, 1)) - V ) ,  11. 

Then, S(U,  A) C V. 
We define the map T ~ ( ~ , ~ )  : M x [0, 1) - M x [0, 1) by 

(x, t ) ,  (x, 4 $ S(U,  4, +, t )  = (x, O ) ,  (x, t )  E S ( U ,  W),  I (x, 2 - X(x)), (x, t )  E S ( U ,  4 - S ( U ,  W), 

where A/2 is defined by (A/2)(x) = 6 A(x). 

Proof of Lemma 1.7.2. 

Statement A. Let M be a manifold, and U an open subset of M x 0. 
Let N ,  be a neighborhood of U in M x [0, I), and f a homeomorphism of 
C1 N ,  onto the closure of a neighborhood of U such that f I C1 U = 1. 
Then, there is a homeomorphism f ‘ :  C1 N ,  -+ M x [0, 1) and a neigh- 
borhood V of U in N such that 

Consider the following two statements. 

(a) f ‘  I(C1 N ,  - N * )  = f  I(C1 N* - N*) ,  

(c) f’ I I/ = 1. 
(b) f’(C1 N , )  = f(C1 N*) ,  and 

(See Fig. 1.7.2.) 

M x CO, I ) 

Figure 1.7.2 

Statement B. Let M be a manifold and let h: M -+ N be an embedding 
into the manifold N. Suppose that U ,  and U2 are open subsets of M such 
that M = U, u U2 and suppose that K is a closed subset relative to M 
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of U,  n U, . Suppose also that for i = 1, 2, there is a homeomorphism 
hi of U, x [0, 1) onto a neighborhood ofh( Ui) in N such that hi(x, 0 )  = h(x) 
for all x E Ui . Then, there is a homeomorphism 

A,’: U, x [O, 1) --H h,(U, x [O, 1)) 

such that h2’(x, 0 )  = h(x)  for all x E U,  and h,’l V = h, I V for some 
neighborhood V of K x 0 in ( U ,  n U,) x [0, 1) (see Fig. 1.7.3). 

M x C0,I) 

Figure 1.7.3 

The proof of Lemma 1.7.2 will proceed as follows: We will show that 
Statement A is true, then we will show that Statement A implies State- 
ment B, and finally we will show that Statement B implies Lemma 1.7.2. 

Let S( U,  A) be a spindle neighborhood of U such that 
S(U,  A) C N ,  n f ( N , ) .  Let 7~ be the associated mapping ~ T ~ s ( ~ , ~ )  and 
letf’: C1 N ,  + M x [0, 1) be defined by 

Proof of A. 

x, x E C W  U,  A m ,  
x E c1 N ,  - S(U,  A/2). fYX)  = In-1f7+), 

EXERCISE 1.7.7. Show that f‘ defined as above is well-defined and that f‘ 
and V = (S(U,  h/2) satisfy the conclusion of Statement A. 

Proof that A a B. Let U be an open subset of U, n U, such that 
K C U C C1 U C U,  n U , .  Then there is a neighborhood N ,  of 
U x 0 in M x [0, 1) such that 

c1 N ,  C h;lh1(U1 x [O, 1)) n ( (U ,  n U,) x [0, 1)). 

Hence, the map f = h-lh, I C1 N ,  is a well-defined homeomorphism 
such that f I C1 U x 0 = 1 and f ( N , )  is open in M x [0, I). 
By applying Statement A, we obtain a homeomorphism 

f’: ClN,+M x [O, 1) 
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and a neighborhood V of U x 0 such that 

(a) f’ I(C1 N ,  - N*)  =f I(Cl N ,  - N*), 

(c) f ’ I  V = 1. 
(b) f’(C1 N,) = f ( C l  N*), and 

Then, define h,’: U, x [0, 1) -+ N by 

h, f ’ (x ) ,  x E c1 N ,  n ( U ,  x [O, I)), 
X E ( U 2  x [O, 1)) - N ,  . 

EXERCISE 1.7.8. Show that h,’ is a well-defined homeomorphism and that 
h,‘ and V satisfy the conclusion of Statement B. 

Proof that B s Lemma 1.7.2. Observe that if U, n U, = 0, then 
Lemma 1.7.2 follows from Lemma 1.7.1. Hence we assume that 
U, n U, # 0. Since M is a normal space there are open subsets 0, and 
0, of M such that C1 0, C U , ,  C1 0, C U,  and M = 0, u 0,. 
Let K = C l  0, n C1 0,. Then, K is a closed subset re1 M of U, n U, 
(see Fig. 1.7.4). By hypothesis there are homeomorphisms hi, i = 1, 2, 

-c10,- 

Figure 1.7.4 

of Ui x [0, 1) onto a neighborhood of Ui in N such that h,(x, 0) = x for 
all x E Ui . By applying Statement B with h the identity map we get a 
homeomorphism h,’: U, x [0, 1) + h,( U, x [0, 1)) and a neigh- 
borhood Vof  K x 0 in ( U ,  n U,) x [0, 1) such that h,’ I V = h, I V 
and h,’ I U, x 0 = h, I U, x 0. 

Obviously 

(0, - 0,) n Cl(0, - 0,) = Cl(0, - 0,) n (0, - 0,) = pl. 

that is 0, - 0, and 0, - 0, are completely separated in N .  Since N is 
a metric space there exist disjoint open subsets W, and W, of N such that 

0, - 0, C W, C h,( U,  x [0, 1)) and 0, - 0, C W, C h,’(U, x [0, 1)). 
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Let V,  and V ,  be neighborhoods of 

and (0, - C10,) x 0 (0, - C10,) x 0, 

respectively, such that h,( V,) C W, and h2’( V,) C W, . Let 

f: vlu  vzu V - + N  

be defined by 
h k 4 ,  X E V I ,  

f (x)  = hz’(x), X E  VZ, I h,(x) = h,‘(x), X E  v. 
Clearly f is a well-defined homeomorphism and f (x, 0) = x for all 

x E M .  Since V,  3 (0, - C l  0,) x 0, V ,  3 (0, - C1 0,) x 0, and 
V 3 (C1 0, n C l  0,) x 0, it follows that V ,  = V,  u V, u V is a 
neighborhood of M x 0 in M x [0, 1). Now define the continuous, 
positive, real-valued function g on M as follows: 

g(x) = Min[l, dist(x, M x [0, 1) - V*)]. 

Let r: M x [0, 1) + V ,  be the homeomorphism defined by F(x,  2) = 
(x, tg(x)). Then, fr is the desired collaring of M in N and the proof of 
Lemma 1.7.2 is complete. 

Collaring Theorem 1.7.4 (Brown). 

PROOF. 

Let M be a proper submanifold of the manifold N ,  that is, boundary 
contained in boundary and interior in interior. The  pair (Bd N ,  Bd M )  is 
said to  be collared in ( N ,  M )  if there is a homeomorphism h from 
(Bd N x [0, l), Bd M x [0, 1)) into ( N ,  M )  such that h(Bd N x [0, 1)) 
[respectively, A( Bd N x [0, l ) ) ]  is a neighborhood of Bd M [respectively, 
Bd MI in N [respectively, MI, and h(x, 0) = x for each x E Bd N .  

Specify the modifications of the proof of Theorem 1.7.4 
necessary to establish the following fact: If M is a proper submanifold of N 
which is locally flat at each point of Bd M ,  then the pair (Bd N ,  Bd M )  is collared 
in ( M ,  N ) .  (For an alternate proof of this exercise see Theorem 1.7.7.) 

A connected m-dimensional manifold Mm without boundary in the 
interior of an n-dimensional manifold Nn, n - m = 1, is two-sided if 
there is a connected open neighborhood U of M in N such that U - M 
has exactly two components each of which is open in N and each of 

The boundary of an n-manifold 
with boundary is collared. 

This follows from Exercise 1.7.3 and Theorem 1.7.3. 

EXERCISE 1.7.9. 
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which has M as its frontier relative to U .  A connected m-manifold M" 
with boundary contained in the interior of an n-manifold, n - m = 1, 
is two-sided Int M is two-sided. 

For a discussion of two-sidedness and the proofs of some results 
concerning two-sidedness see [Rushing, 61. 

Bicollar Theorem 1.7.5 (Brown). Let M be a locally f lat ,  connected, 
two-sided (n  - 1)-submanifold without boundary of an n-manifold N.  
Then, M is bicollared in N. 

PROOF. Let U be a connected neighborhood of M in N such that 
U - M has two components C, and C,. I t  is easy to show that all 
points in M have arbitrarily small neighborhoods which intersect both 
C, and C, . Since M is also locally flat in U,  C, u M and C, u M are 
manifolds with boundary M .  It follows from Theorem 1.7.4 that M is 
collared in each. Hence, M is bicollared in N .  

Suppose that X is a subset of the submanifold M of the manifold 
N .  Then, if a homeomorphism 

h: M x [0, I]/[(x, t )  = (x, 0 )  if x E X ,  0 < t < 13 + N 

is such that h([ (x ,  O ) ] )  = x, we call 

h(M x [O, I]/[(x, t )  = (x, 0)  if x E X ,  0 < t < 11) 

a collar of M pinched at X if it is a neighborhood of M - X in N .  
Similarly, if a homeomorphism 

h : M  x [--I, l]/[(x,t) = (x,O) if  EX, - 1  < t < 11-N 

is such that h([ (x ,  O ) ] )  = x, we call 

h(M x [ - I ,  l]/[(x,t) = (x,O) if  EX, -1 < t < I]) 
a bicollar of M pinched at X if it is a neighborhood of M - X in N .  
(For a discussion of pinched collars and the following theorem, see 
[Rushing, 81.) 

Pinched (Bi)collar Theorem 1.7.6. ( ; )Let  X be a closed subset of a 
manifold M which is contained in a manifold N. If M - X is locally 
collared in N ,  then there is a collar of M in N pinched at X .  

(ii) Let X be a closed subset of the boundary of a manifold M .  Then, 
there is a collar of Bd M in M pinched at X .  
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(iii) Let M be an (n - 1)-submanifold of an n-manifold N and let X 
be a closed subset of M .  If M - X is a two-sided, connected, locally JEat 
submanifold of the interior of N ,  then there is a bicollar of M in N pinched 
at  X .  

Prove Theorem 1.7.6. (Be very careful and include all 
details.) 

As mentioned earlier, we shall give a short proof, due to Connelly [2], 
of a relative version of Theorem 1.7.3. Before stating and proving that 
relative version, let us generalize the definition given before Exercise 
1.7.9. A topological embedding f: M k  ---f Nn of the k-manifold M into 
the n-manifold N is said to be allowable if f-l( aN) is a (k - 1)-sub- 
manifold (possible empty) of aM. A manifold pair ( N ,  M )  is said to be 
allowable if the inclusion of M into N is allowable. A k-manifold Mk 
which is allowably contained in an n-manifold Nn is said to be locally 
flat at x E M - aN, x E Int( aN n M ) ,  x E a( aN n M ) ,  respectively, 
if there is a neighborhood U of x in N such that ( U ,  U n M )  is homeo- 
morphic to (En, Ek), (Ey  , E;), (ET , Et-' x E:), respectively. Let 
( N ,  M )  be an allowable manifold pair. Then we say that the pair 
(aN,  aN n M )  is locally collared in ( N ,  M )  if M is locally flat at each 
point of aN n M. We will say that the pair ( alv, aN n M )  is collared in 
( N ,  M )  if there is a homeomorphism C from (aN,  aN n M )  x [0, 1) 
onto a neighborhood pair ( U ,  V )  of (aN,  aN n M )  in ( N ,  M )  such that 
C(x, 0) = x for each x E aN. 

EXERCISE 1.7.10. 

Relative Collaring Theorem 1.7.7. Let ( N ,  M )  be an allowable 
manifold pair. If the pair (aN,  aN n M )  is locally collared in ( N ,  M ) ,  
then it is collared in ( N ,  M ) .  

First assume that M and N are compact. Since ( aN, aN n M )  
is locally collared in ( N ,  M ) ,  there is an open cover U, , V ,  , ..., U, of 
aN such that for each i, 1 6 i 6 s, there is a closed embedding hi: 
oi x [0, 11 -N N where hi1( aN) = Oi x 0, hi(x, 0) = x for x E Ui 
and 

PROOF. 

hi( Di x [0, 11) n M = hi((aN n M n Us)  x [0, 11). 

Let V ,  , V ,  , ..., V,  be another cover of aN such that Vi C Ui , i = 1 ,..., s. 
Let N+ = N u ( a N  x [-I, 01) where (x, 0) is identified with x. 

Finally, let Hi: Di x [-1, I] -+ N+, i = 1, ..., s be the embeddings 
defined by 

for x E .Ti x [0, 11, 
for x E tii x [--I, 01. 
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Inductively, we shall define maps f,: aN --f [- 1, 01 and embeddings 

(a) f , ( x )  = -1 if x E UjGl Pj , 
g,: N - N+, i = 0, 1, ..., s such that 

(b) gi(x) = (x, fi(x)) if x E alv, 
(c) gi(N) = N u {(x, t)I t >fi(x)}, and 
(d) g,(M) = (aNn M )  x [-I, 01. 

Note that since the Vi’s cover aN, g,(N) = N+ and thus g;’ will give 
the required collar. 

Define go = 1, and inductively suppose gi-l has been defined. Let 
+,: HF1gi-l(N) - D, x [-1, 11 be an embedding that pushes down 
along fibers such that $iH:lg,-l( 7,) = Ti x (-1) and 

+i I (Di  - Ui) x [-1, 11 u Di x (1) = 1. 

Such a $, can be defined as follows: Let Xi: 0, - [0, I] be a Urysohn 
function which is 0 on ui - U, and 1 on Pi . Let 

sz: [fi-l(x)> 11 + [(I - h ( x ) ) f i - l ( x )  + Mx)(-lh 11 
be the homeomorphism given by s,(t) = ( (b  - l)/(a - l ) ) ( t  - 1) + 1, 
where a =fi-l(x) and b = (1 - h , ( x ) ) f i - l ( x )  + Ai(x)(-l). Now 
define +,(x, t )  = (x, s,(t)). Clearly, +, is continuous. Then define 
@,: g,-,(N) - N+ by 

a$(.) = Hi+iH;l(x) 
Ix otherwise, 

for x E g,-,(N) n Hi( C7 x [- 1, l]), 

and g, = @igi-l. Clearly @, and thus g, is a well-defined embedding 
since +, l(Di - U,) x [-I, 11 u D, x {I} = I ,  since +, is an em- 
bedding (because each s, is), and since 

gi-,(N) n Hj(Vi x [-I, 11) 
= Hi( Dd x [0, 11) u {(x, t )  I t 3 f i - l ( x )  and x E Od} 

by (c) for gi-l . Note that (b) now definesf,(x), and that (a), (c), and (b) 
are satisfied by construction. 

The same method of proof works 
in the noncompact case since it is possible to order the Uj , although infinite, so 
that every point in N+ has an open neighborhood which moves only finitely 
often. 

REMARK 1.7.2 (The noncompact case). 

REMARK 1.7.3 (The PL case). The theorem is still true if all manifolds 
and maps mentioned (including the definition of local collaring) are PL. The 
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same proof goes through except that the particular definition of 4i must be 
altered slightly. Namely, to make 4, PL it is easiest to triangulate oi x [- 1, 11 
so that v$ x [-I, 11 and H;lgi-l(iV) are subpolyhedra and the projection 
T: Ui x [-1, I] + oi is simplicial. Then, it is easy to define a simplicial 
map 4, so that it has the desired properties. 

1.8. CELLULAR SETS A N D  APPLICATIONS 

A set X in an n-dimensional manifold M is said to be cellular in M 
if X = niz1 Din, where each Din is an n-cell such that Int  Din 3 Dt+l . 
Thus, one of the obvious necessary conditions that an embedding 
f: Ik + En be equivalent to the inclusion of Ik into En is that f (Ik) be 
cellular in En. It is easy to see that the topologist’s sin( 1 / x )  curve (which 
includes the limit arc) pictured in Fig. 1.8.1 is cellular in E2 and so 
cellular sets do not even have to be locally connected. 

m 

Figure 1.8.1 

It is appropriate to begin our study of cellular sets by proving the 
following theorem, although with more work we could prove a better 
theorem. (It is easy to see that one improvement which can be made after 
one has access to the generalized Schoenflies theorem is the removal of 
the condition in parentheses.) 

Decomposition Theorem 1.8.1. Let {Xi} be a collection of closed 
subsets of the interior of an n-manifold M for which there exists a collection 
of n-cells {Di} such that Xi C Int  Di and for which there is an E > 0 such 
that dist(Di , Dj) > E whenever i # j .  Then, there is a homeomorphism 
h:  MI{&} ++ M such that h I Bd M = I (and h ( D i / X i )  is contained in 
an open n-cell Ui in M for some n-cell Di such that Xi C Int  Di) i f  and 
only every Xi is cellular. 

Corollary 1.8.1. Let X be a compact subset of En. Then En/X  is 
homeomorphic to En if and only i f  X is cellular. 
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A subset X of a manifold M is point-like if M - X is homeomorphic 
to M - p for somep  E M .  

Corollary 1.8.2. A cellular subset X in the interior of a manifold is 
point-like. 

Corollary 1.8.3. Let M be a topological manifold and let X be a 
cellular subset of Int M .  Suppose that MIX is homeomorphic to a 
manifold N.  Then, M is  homeomorphic to N .  

EXERCISE 1.8.1. Give examples to show that it is possible to have a manifold 
M (with or without boundary) and a closed subset X of Int M such that MIX is 
a manifold but such that X is not cellular in M. 

Before proving Theorem 1 A.1 we will establish a couple of lemmas. 

Lemma 1.8.1. Let Dn be an n-cell and let {Xi}LI  be a jn i te  collection of 
disjoint closed subsets of Int  D. Suppose that f is a homeomorphism of 
D/{Xi}~==, into an n-manifold M.  Then, f ( D/{Xi}61) is the union off (Bd D )  
and one of its complementary domains. 

PROOF. [We will first show that f ( D / ( X i } )  C (f(Bd D )  u C) where 
C is a complementary domain off (Bd D).] Sincef(1nt D/{Xi}) is con- 
nected and does not intersect f (Bd D) it must be contained in 
one of the complementary domains C of f (Bd D) in M. Thus, 

[We will complete the proof by showing that(f(Bd D)u C)C f(D/{X,}).] 
First we want to see that f (Int D - ui=l Xi)  is open. Well, certainly 
Int D - (JI=l Xi  is open since the X i  are closed. Thus, since 
f 1 Int  D - (JLl Xi is one-to-one, it follows from the Invariance of 
Domain Theorem that U = f (Int D - (Ji=l Xi) is an open subset of C. 
Now consider the set V = C - ( U  u~((J :=~ X i ) )  = C - f (D/{Xi}).  
Since D is compact, D/{X,} is compact and so f ( D / { X i } )  is compact, 
hence closed in M .  Thus  V is open in C. Now we have that 

f ( D / W i H  c [ f  (Bd D) u CI. 

where U and V are disjoint open subsets of C. This means that the finite 
set f((J{=l Xi)  separates C which is impossible. Thus,  V = 0 and 
C Cf(D/{Xi ) ) .  Hence, (f (Bd D) u C) C f ( D / { X i } )  as desired. 

Lemma 1.8.2. Let D be an n-cell and let X be a closed subset of Int  D. 
Suppose that there is a homeomorphism f: D / X  --+ M ,  where M is an 
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n-manifold, such that f ( D / X )  is contained in an open n-cell U in M .  Then, 
X i s  cellular in D.  

It follows from Lemma 1.8.1 that f ( D / X )  =f(Bd D )  v C 
where C is a complementary domain off(Bd D )  in M .  Certainly it will 
follow that X is cellular if we can show that for any neighborhood V of 
X in D there is an n-cell contained in I.' which contains X in its interior. 
Let V be a neighborhood of X .  Then,f(V) is open in C and contains 
the pointf(X). I t  is easy to construct a homeomorphism h of U which 
carries f ( D / X )  into f( V) and which is fixed on an n-cell neighborhood 
W [which is contained inf(V)] of the pointf(X). Let g be the map of 
D into itself defined by 

PROOF. 

Sincef-lhf = 1 onf-l( W), g is a well-defined homeomorphism. Hence, 
g(D) is the desired n-cell in V containing X in its interior. 

Let D and D ,  (D, C Int D) be n-cells. Then, given E > 0, 
show that there is a homeomorphism h: D -++ D such that k(x) = x for all 
x E Bd D and diam h(D,) < E. 

Proof of Theorem 1.8.1 

Necessity. 

EXERCISE 1.8.2. 

This implication follows immediately from Lemma 1.8.2, 
for by letting (D,, X ,  , Ui , h I D,/X,) play the role of (D ,  X, U,  h I D / X )  
of the lemma it follows that X i  is cellular. 

Let {Dt}& be a sequence of n-cells in D, whose 
intersection is Xi and such that D:+, C Int  0:. By Exercise 1.8.2, 
we can get a homeomorphism hli of Di onto itself which is fixed on 
Bd 0, and such that the diameter of hli(Dli) is less than 1. Let 
hzi: D,  --w D, be defined by 

Sufficiency. 

wheregi: hli(Dli) - hli(Dli) is a map which is the identity on Bd hXi(Dli) 
and takes hlt(Dzi) onto a set of diameter less than 4. Inductively, let 
hki be a homeomorphism of D, onto itself such that hki = hi k-1 On 

D, - Di-l  and the diameter of hki(Dk) is less than Ilk. Since 
I hki(x) - hk+l(x)I < l /k  for all x E Di , hi = limk hki [that is, hi(.) 
is defined to be the limit of the sequence {hki(x)}$?,] is a map of D, onto 
itself which is the identity on Bd Di . Let h:  M/ {X , }  ++ M be defined 
by h(Xi)  = hi(x) for some x E X i ,  h(x)  = hi(x) for x E Di - Xi, 
and h(x) = x for x E M - U i D i ,  
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EXERCISE 1.8.3. Show that h is a well-defined homeomorphism of M/{X,}  

Notice that by the above proof Di is a cell, hence Ui = Int D, 

onto Msuch that h I B d M  = 1. 

and 6, = D,’ satisfy the other condition of the conclusion of Theorem 1.8.1. 
REMARK 1.8.1. 

The following theorem was proved about 1900. 

Jordan Curve Theorem. If Z is a 1-sphere in S2, then S2 - Z 
consists of exactly two disjoint domains of which Z is the common boundary. 

An embedding f: Sk -+ Sn [En] is said to be flat if it is equivalent to 
the inclusion of Sk into Sn [En].  Shortly after the Jordan curve theorem 
appeared the following classical generalization was prove. 

Schoenflies Theorem. 

The following analog in high dimensions of the Jordan curve theorem 

Every embedding f: S1 -+ S2 is Jut. 

was also proved early in this century. 

Jordan-Brouwer Separation Theorem. If Z i s  a topological ( n  - 1)- 
sphere in Sn, then it separates Sn into exactly two disjoint domains of 
which it is the common boundary. (See p. 363 of [Hocking and Young, 11 
or p. 63 of [Wilder, 23.) 

Of course it was conjectured that the analog of the Schoenflies theorem 
also held in high dimensions, that is, that every embedding f: Sn-l + Sn 
is flat. 

Sn is flat if and only if the closure of EXERCISE 1.8.4. Show that f: 
each of the two complementary domains off(Sn-l) in Sn are n-cells. 

I n  1921 Alexander announced that he had proved this generalized 
Schoenflies theorem, however in 1923 he showed [Alexander, 21 his proof 
to be incorrect by exhibiting a 2-sphere (called the Alexander horned 
sphere) in S3 such that one of the complementary domains was not an 
open cell. (We will discuss this example in Section 2.4.) The  conjecture 
was then modified by adding a niceness condition to the embedded 
(n - 1)-sphere in Sn.  In  particular, it was conjectured that every 
bicollared embedding f: Sn-l + S” is flat. 

In  1959 Mazur [2] gave an elegant proof of the generalized Schoenflies 
theorem modulo a “niceness” condition. Then, in 1960 Brown [ 5 ]  gave 
an elementary proof. Also, Morse [I] showed that the niceness condition 
imposed by Mazur could easily be removed. In  this section we will give a 
proof of the following generalized Schoenflies theorem which is essen- 
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tially that of Brown. (In Section 3.3 we will consider Mazur's technique 
of proof.) 

Generalized Schoenflies Theorem 1.8.2. A locally p a t  embedding h: 
Sn-l -+ Sn is pat .  

REMARK 1.8.2. Notice that the Generalized Schoenflies Theorem answers 
a special case of the Main Problem of Topological Embeddings. In particular, 
it says that if X = Sn-l and Y = Sn then the set of all locally flat embeddings 
of X into Y are in the same equivalence class. 

REMARK 1.8.3. The following important piecewise linear analog of the 

PL Schoenflier Conjecture. Let 2P-l be a PL (n  - 1)-sphere in Sn. 

However the following weaker result is known. 
Alexander-NewmanTheorem. If .Zn is a PL n-sphere and Bn is a PL 

n-ball which i s  a subpolyhedron of .Zn, then C1(Zn - Bn) is a PL n-ball. 
Proofs of this theorem have appeared in [Alexander, 51, [Newman, 31, 

[Glaser, 31, and [Zeeman, 11. A particularly nice recent proof appears in 
[Cohen, 31. 

generalized Schoenflies theorem is still unknown: 

Then, the closures of the complimentary domains of Zn-' are PL n-balls. 

Before proving Theorem 1.8.2 we will establish a lemma. 

Lemma 1.8.3. Let X ,  and X ,  be disjoint closed subsets of Sn such that 
there is a homeomorphism h: Sn/{X1 , X,} - Sn Then, both X ,  and X ,  
are cellular in Sn. 

Since Sn is connected and X ,  and X ,  are disjoint closed 
subsets of Sn, there must be a point x E Sn - (XI u X,). There is an 
E > 0 such that B, the n-cell of radius E about x, misses X ,  u X ,  . 
Then, the n-cell B, = C1(Sn - B) contains X ,  u X ,  in its interior. 
Let x1 = h(X,) and x, = h(X,).  I t  follows from Lemma 1.8.1 that 
h(B,) = h(Bd B,) u C where C is that complementary domain of 
h(Bd B,) which contains x1 u x, . Let U be an open subset of C which 
contains x1 but not x, . Then, it is easy to construct a homeomorphism 
f of Sn onto itself such that fh(B,) C U and h I W = 1 where W is a 
small neighborhood of x1 . It is easy to see that g :  B,/{X,} -+ Sn defined 
bv 

PROOF. 

is a well-defined homeomorphism. Then, it follows from Lemma 1.8.2 
that X ,  is cellular. I n  a similar manner one can show that X ,  is cellular. 
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Proof of Theorem 1.8.2. Since our embedding h:  Sn-l + Sn is 
locally flat, it follows from Theorem 1.7.5 and the Jordan-Brouwer 
separation theorem (or more simply from [Rushing, 61) that there is an 
embedding h: Sn-l x [-1, I]  -+ Sn such that h(x ,  0) = h(x) for all 
x E Sn. We know by the Jordan-Brouwer separation theorem that 
h(Sn-I x -l), h(Sn-l x 0) and h(Sn-' x 1) each separates Sn into 
two complementary domains having it as the common boundary. Let A 
be the closure of the complementary domain of h(Sn-l x 1) which does 
not contain h(Sn-l x - 1) and let B be the closure of the complementary 
domain of t;(Sn-l x -1) which does not contain h(Sn-l x 1). Let 

f: 9 - 1  x [- 1 ,  l]/{S"-l x 1 ,  S"-l x -1) ---f S" 

be a homeomorphism such that f(Sn-l  x 1) is the north pole and 
f (Sn-l x -1) is the south pole. Then, 

ft;-'Ih(S"-l x ( - 1 ,  l)):h(S"-1 x ( - 1 ,  l ) ) + S "  

can be extended to a homeomorphism 

f*: S"/{A, B} ++ S" 

by defining f,(A) = north pole and f , (B) = south pole. Let DA and DB 
be the complementary domains of h(Sn-l x 0) which contain A and B,  
respectively. By Lemma 1.8.3 we know that A and B are cellular. Thus, 
since 

and 

are homeomorphisms, it follows from Corollary 1.8.3 that 0, and D, 
are n-cells. Exercise 1.8.4 completes the proof of Theorem 1 A.2. 

f* I DAlA: D,lA -++ ST f* I DBlB: DBlB - S? 

Theorem 1.8.3 (Cantrell). Let D - 1  be an ( n  - I)-sphere contained 
in Sn and let C be a complementary domain of 2. If Cl(C) is a manifold, 
then it is an n-cell. 

EXERCISE 1.8.5. Prove Theorem 1.8.3. 

Theorem 1.8.4. If M is a compact manifold such that M = U V V 
where U and V are open n-cells, then M is an n-sphere. 

Let h:  Int Bn - U be a homeomorphism. I t  must be the 
case that h-l( V )  u Bd Bn is a neighborhood of Bd Bn in Bn; for, if not, 
we could get a sequence {xi} -+ p ,  xi E Int Bn - h-l( V ) ,  p E Bd Bn, and 
the sequence h(xi) would have no convergent subsequence which would 
contradict the compactness of M .  Thus, there is an E between 0 and 1 

PROOF. 
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such that the n-cell B,n of radius e and centered at the origin is such that 
Bd B," C h-'(V). Now, ~ z ( B , ~ )  is a closed n-cell whose boundary is 
locally flat in V w En. By the generalized Schoenflies Theorem 
C l ( M  - h(B,")) C V is an n-cell. Therefore, 

M = h(B*") u Cl(M - h(B*")) 

is the union of two n-cells meeting in their common boundary and is thus 
an n-sphere. 

Let S, and S, be nonintersecting, locally flat (n - 1)-spheres in Sn. 
Denote the closure of the complementary domain of S,, i = 1, 2, 
containing Sj , j = 2, 1 by B, , i = 1, 2. By the generalized Schoenflies 
theorem and Exercise 1.8.4, Bi , i = 1, 2 are n-cells. We call B, n B, 
the closure of the region between S, and S, and denote it by [S,  , S,]. 

Theorem 1.8.5. Let S1 , S, , B, , B, and [S, , S,] be as in the abowe 
dejnition. Then, 

(a) [S, , S,] - S, w Sn-l x 10, 11, and 
(b) [S,, S,] - (S, u S,) M Sn-l X (0, 1) .  

PROOF OF (a). Since S, is locally flat in Sn, it is bicollared by Theorem 
1.7.5, and so it folIows easily from the generalized Schoenflies 
theorem that Sn - Int is cellular in Int B, . Thus, by Theorem 1.8.1 
B,/(Sn - Int B,) is an n-cell. Hence 

[S, , S,] - S,  = B, - (Sn - Int B,) w I n  - point w Sn-l x LO, 1) 

as desired. Part (b) is proved similarly. 

REMARK 1.8.4. The n-dimensional annulus conjecture is that [S, , S,] w 
Sn-l x [0, I]. It has only recently been verified for n 2 5 [Kirby, Siebenmann, 
and Wall, I], and is still unknown for n = 4. Even for n = 2, it is a good exercise. 



C H A P T E R  2 

Wild Embeddings, 
Knotted Embeddings, 
and Related Topics 

2.1. INTRODUCTORY DEFINITIONS 

An embedding f: P + Q of a polyhedron P into a polyhedron Q is 
tame if there is a homeomorphism h: Q t, Q such that hf is PL. The  
embedding f: P + Q is said to be wild if it is not tame. Here we have 
given a weak definition of tame so that our examples of wild embeddings 
will be stronger. The  ambient space Q will be either En or Sn throughout 
this chapter, and the embedded polyhedron P will usually be Ik or Sk. 
(Here, you may think of Sk as the polyhedron aIk+l.) An embeddingf 
of Ik or Sk into En or Sn is said to be flat if there is a homeomorphism h 
of E n  or Sn, as the case may be, onto itself such that hf is the inclusion 
map. A tame embedding f of Ik or Sk into En or Sn is knotted if it is 
not flat. 

EXERCISE 2.1.1. Show that every tame embedding f of I into En is flat. 
(Because of this, sometimes the term tame is substituted for flat for embeddings 
of I.) 

2.2. THE GROUP O F  A KNOT AND 

KNOTTED CODIMENSION TWO SPHERES 

By a knot we mean an embedding h: S1 -+ E3. We also refer to 
h(S1) as a knot, however our meaning will be clear from the context. 
All knots which we consider in this section will be tame. If h: S1 + E3 
is a knot then 7r1(E3 - h(S1)) is called the group of the knot h. 

51 
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Thus, the group of a knot is actually the fundamental group of the 
complement of the image of the knot. In  this section we will indicate 
briefly how to compute the group of a knot. For more detailed discussions 
refer to [Fox, 13 or to [Crowell and Fox, 11. (Our discussion here sum- 
marizes pp. 121 and 122 of the first reference, pp. 6 ,  7, and 88-91 of 
the second reference and includes a short discussion of group presen- 
tations.) 

A knot K in E3 is usually specified by a projection r into E2. For 
instance, Fig. 2.2.1 represents the projection of a trefoil knot which we 

Figure 2.2.1 

will consider later. The  projection P :  E3 + E2 is defined by P(x, y ,  z) = 
(x, y, 0) and r: K -+ E2 is defined to be P 1 K. A point p E r ( K )  is 
called a multiple point if n-I(p)  contains more than one point. The  
order of p E n(K)  is the cardinality of r-'(p). Thus, a double point is 
a multiple point of order two, a triple point is a point of order three, 
and so forth. Multiple points of infinite order can also occur. In  general, 
the projection n(K)  may be quite complicated in the number and orders 
of multiple points present. Many times, however, a very complicated knot 
may be equivalent to another knot whose projection is relatively simple. 
A knot which is a polyhedron might be considered to be fairly simple 
if it satisfies the following definition. 

A polyhedral knot K in E3 is in regular position if (i) K has only a 
finite number of multiple points and they are all double points, and 
(ii) no double point is the image of any vertex of K .  The second con- 
condition insures that every double point is a genuine crossing as in the 
left of Fig. 2.2.2 and that it is not the sort of double point shown in the 
right of Fig. 2.2.2. Each double point of r ( K ) ,  where K is a knot in 
regular position, is the image of two points of K. The  one with the larger 
z-coordinate is called an overcrossing and the other point is the corres- 
ponding underscrossing. The following theorem is proved on page 
7 of [Crowell and Fox, 11. 
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Figure 2.2.2 

Theorem 2.2.1. Any polyhedral knot in E3 is  equivalent under an 
arbitrarily small rotation of E3 to a polyhedral knot in regular position. 

We will now digress to show how any group G can be represented by 
a presentation [ X :  R]. First of all, let us define the free group H 
generated by a set X .  Consider the set X ,  = X x (1 ,  -1). For each 
x E X ,  let x1 denote (x, 1) and x-l denote (x, - 1). A word made from 
X ,  is simply a finite formal product of elements of X ,  . A word w is 
reduced if for every x E X ,  x1 never stands next to x-l in w. The  elements 
of the free group H generated by X are simply the set of all reduced 
words made from X ,  along with a symbol 1 which stands for the empty 
word. The  group operation in H is defined as follows: Let w1 and w, 
be arbitrary elements of H. If w1 = 1, we define wlwz = w, ; if w, = 1, 
we define w1w2 = w l .  Otherwise, w1 and w, are both reduced words and 
so wlw2 is a word. The  word wlw2 determines uniquely either the empty 
word 1 or a reduced word w by canceling from wlwz pairs of the form 
x-lxl or xlx-l as far as possible. We define wlwz E H by taking wlw2 = 1 
or wlwz = w accordingly. I t  is easy to check that this operation makes H 
a group with 1 the identity element. 

Now we will show that any group G is isomorphic to a factor group 
of a free group. Let X be a subset of G which generates G. (You could 
take X to be G.) Consider the free group H generated by X .  The  inclusion 
function i: X -+ G extends to a homomorphism h:  H - G. Let 0 
denote the kernel of h. Then by the fundamental theorem of homo- 
morphisms G is isomorphic to HIO. 

I t  is clear that G m H I 0  is completely determined by [ X :  R], where 
X is a set of generators for the free group H and R is a set of elements of 
H whose normal closure is 0, that is, the smallest normal subgroup of H 
containing R is 0. We call the elements of X the generators of G, the 
elements of R the defining relations of G and [ X :  R] a presentation 
of G. 

Given a polyhedral knot K in E3, we will now describe an algorithm 
for reading from a regular projection of K a set of generators and 
defining relations for the group G of K. In  a regular projection of K,  the 
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number n of double points is finite. Over each double point, K has an 
undercrossing point and an overcrossing point. The n undercrossing 
points divide K into n arcs. Let xj denote the element of G represented 
by a loop that circles once around the j th  arc in the direction of a left- 
handed screw and does nothing funny (see Fig. 2.2.3). (In order for 

Figure 2.2.3 

left-handed screw to mean anything we first give an orientation t o  K.) 
I t  is intuitively clear that X = {xl, ..., xn} generates G, and it is even 
not too difficult to prove. 

At each crossing a relation can be read. For instance, in Fig. 2.2.4 the 
relation would be Fig. 2.2.5 shows why this is a true relation. 

, j t h  arc 

“1 ) )x1 k t h  

I 

Figure 2.2.4 

X 

Figure 2.2.5 

The n relations rl , ..., rn obtained in this way form a complete system of 
defining relations for G. This may seem clear intuitively, but in fact, it 
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is rather difficult to prove. Now we have obtained a presentation 
[ x l ,  ..., x,: rl , ..., r,] of G. It is easy to see that any one of the relations 
is a consequence of the others. Thus, we arrive at a presentation 
[xl , ..., x,: rl  , ..., r,-J of G. 

We will conclude this section by applying the above algorithm to show 
that the group of the trefoil knot K is non-Abelian. Denote the generators 
by x, y, and z. Then, by referring to Fig. 2.2.6, we see that 

7r1(E3 - K )  = [x,  y ,  z: x-lyzy-1, y-lzxz-1, z1xyx-']. 

1y 

Figure 2.2.6 

From the third relation it follows that z = xyx-l, hence an equivalent 
presentation is 

[x, y : x-lyxyx-'y-1, y-1xyx-'xxy-"x-', xy-Y-'x-1xyx-1] 

w [x, y :  x-'yxyx-'y-', y-'xyxy-'x-', I ]  

Consider the symmetric group S3 of degree three, which is generated 
by the cycles (12) and (23). First observe that S, is non-Abelian, since 

(12)(23) = (132) # (123) = (23)(12). 

Let H denote the free group for which x and y are a free basis. Then, 
the homomorphism 6 of H onto S, defined by 
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induces a homomorphism of the knot group G onto S,  provided 
O(xyx) = O(yxy). But, this is the case since 

qVx) = e(x) q y )  q x )  = (12)(23)(12) = (13) 

= (23)(12)(23) = O(Y) W) O(Y) = O(rxr). 
Thus, the knot group G of the trefoil knot K can be mapped homo- 
morphically onto a non-Abelian group and so G is non Abelian. 

I t  follows immediately from the algorithm that .rr1(E3 - Sl) is infinite 
cyclic. (This can also be proved by showing that E3 - S1 is of the same 
homotopy type as S1 and showing that nl(S1) is infinite cyclic.) Thus, 
the trefoil knot is knotted. 

Let X be a compact topological space. Then, we define the suspension, 
Y(X), of X to be the quotient space (X x I ) / { X  x -1, X x l}, where 
I = [-1, 11. (It is easy to show that the suspension of a polyhedron as 
defined in Section 1.6 is topologically equivalent to its suspension as a 
topological space just defined.) If Pk is a k-polyhedron and Qn is an 
n-polyhedron, k < n, then n - k is called the codimension between 
P and Q. 

Example 2.2.1. 

PROOF. 

There is a knotted codimension two sphere ZnF2 in 

We will prove this by induction on n. We have just seen that 
there is a 1-sphere Z1 in S3 such that .rr1(S3 - Z1 ) + Z ,  where Z is the 
group of integers. Assume that there is an ( n  - 3)-sphere ZnP3 in S"-l 
such that .rrl(Sy'-l - Zn+ ) + 2. Then, it is easy to see that 9'(Sn-l) 
is an n-sphere (which we consider to be S"), 9'(Zn-3) is an (n  - 2)- 
sphere and L 7 ( P - 3 )  C 9(S"-l). Clearly, (Y(Sn- l )  - 9 ( 2 ? - 3 ) )  M 

(Sn-l - L P 3 )  x (-1, 1). Since (Sn-l - Z7"-") x (-1, 1) deformation 
retracts onto Sn-1 - 2 - 3 ,  it follows that .rr1(9'(Sn-l) - 9'(2"-3)) M 
v1(Sn-l - EN-,) + 2. Thus, 9'(Zln-3) is knotted in S". 

Sn for n 3 3.  Furthermore, .rrl(Sn - Zn-2 ) + 2. 

2.3. LOCAL HOMOTOPY GROUPS, WILD CODIMENSION 

TWO CELLS AND SPHERES, AND TAME NONLOCALLY 

FLAT CODIMENSION TWO CELLS AND SPHERES 

Our considerations in this section will all be in codimension two. 
Many strange things can happen in codimension two. For instance, in 
the last section we saw that tame spheres can knot this codimension. 
Later we will show that spheres cannot knot in codimensions greater than 
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two and Theorems 1.7.2 and 1.8.2 imply that (tame) spheres cannot 
(topologically) knot in codimension one. In  this section, we define the 
local homotopy groups (as developed in [Tindell, 31, for example) in 
codimension two, and it turns out that they can be bad even for codi- 
mension two piecewise linear submanifolds. Because of this, we are 
easily able to exhibit wild codimension two cells and spheres. We shall 
see later that wild cells and spheres exist in other codimensions but their 
wildness is harder to establish. Also, because of the bad local homotopy 
groups we are able to give tame nonlocally flat codimension two cells 
and spheres. It follows from Theorem 1.7.2 that such cells and spheres 
cannot exist in other codimensions. 

Let IM C Q be topological n - 2 and n-manifolds, respectively. 
A fundamental neighborhood sequence at $ E M  is a sequence 
{ Vi)& of neighborhoods of p in Q satisfying 

(a) 
(b) Vi = p ,  and 

(c) 

V,  3 V,  3 - . a ,  

each inclusion induced map i, : rk( V, - M )  -+ rk( V ,  - M )  is 
an isomorphism onto for each k when r 3 s. 

If M C Q are topological n - 2 and n-manifolds, respectively, and p E M ,  
then we say that the local homotopy groups exist at p if there is a 
fundamental neighborhood sequence { Vi} at p. (rk( V,  - M )  is called 
the kth local homotopy group at p.) 

Proposition 2.3.1. The k th  local homotopy group is well-deJined; 
that is, f { Vi) and { Ui) are fundamental nez@orhood sequences at p E M ,  
then rk( V ,  - M )  M rk( U ,  - M ) .  

I t  follows from Conditions a and b of the definition of funda- 
mental neighborhood sequence that there are integers r, s, and t such 
that V 1  C U ,  C V v  C U ,  . Thus, we have the following inclusion induced 
commutative diagram where i, and j ,  are the onto isomorphisms assured 
by Condition c of the definition of fundamental neighborhood sequence. 

PROOF. 

n,( u, - M )  -% 7qC(  v, - M )  
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Since i, is onto, a! is onto and since j ,  is one-to-one, a! is one-to-one. 
Hence, rk( U, - M )  M rk( U ,  - M )  M rk( V ,  - M )  M ?rk( V, - M) as 
desired. 

Although the local homotopy groups do not always exist, the next 
three propositions give important cases where they do exist. 

Proposition 2.3.2. I f  M is locally flat at p E Int M ,  then the local 
groups exist at p and are isomorphic to the corresponding homotopy groups 
of s1. 

EXERCISE 2.3.1. Prove Proposition 2.3.2. 

Proposition 2.3.3. Let Zn-2 be a topological (n - 2)-sphere in Sn, let 
M be the cone v * .Z'n-2 [v E Int Bn+l], and let N be the cone v * Sn = Bnfl. 
Then, the local homotopy groups exist at the vertex v and are isomorphic to 

Consider N to be (Sn x [0, l])/(Sn x 1) and let 

vi = (S" x [(i  - l ) / ( i  + l), l])/(S" x 1). 

1. S n  - p - 2  
k( 

PROOF. 

(Notice that V, = N = z, t Sn.) By using this fundamental neighbor- 
hood sequence { Vi},  it is easy to complete the proof. 

Proposition 2.3.4. I f  M C N are PL n - 2 and n-manifolds, respect- 

EXERCISE 2.3.2. Prove Proposition 2.3.4. 

The  following example appears in [Doyle and Hocking,l]. (Glaser [4] 
made use of this construction to show that for n > 4 there are 
uncountably many almost polyhedral wild (n  - 2)-cells in En. Corre- 
spondingly in E3, Alford and Ball [I] constructed infinitely many almost 
polyhedral wild arcs so as to have an end-point as the "bad" point and 
Fox and Harrold [I] constructed uncountably many almost polyhedral 
wild arcs with an interior point as the 'Ibad'' point.) 

There is a wild (n  - 2)-cell 
On+ and a wild (n - 2)-sphere in Sn f o r  n 4. (We will show that 
this is also the case for n = 3 later.) 

(We will construct a wild disk D and a wild 2-sphere 2 
in S4 and then it will be easy to see that essentially the same constructions 
yield a wild (n  - 2)-cell and a wild (n - 2)-sphere in Sn for n > 4.) 
In S3 let {A:} be a sequence of 3-simplexes that converge to a point q 

ively, then the local homotopy groups exist at every point of M .  

Example 2.3.1 (Doyle and Hocking). 

PROOF. 
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such that di3 n dj3 = 8 if i # j .  Let (Ki} be a sequence of trefoil knots 
such that Ki C di3. In St - S3, let { p i }  be a sequence of points 
converging to q such that if A,4 is the simplex * p i ,  then {di4} is a 
sequence of pairwise disjoint simplexes converging to q. If df4 denotes 

Figure 2.3.1 

the barycenter of 42, then the cone ad4 * Ki is a polygonal disk in 
S4. Now in S3 join * K ,  and d,4 * K ,  by a polygonal disk D,  
so that d14 * K ,  D, u AZ4 * K ,  is a polygonal disk disjoint from 
(UT=3 di4 * Ki)  u q. We next join dZ4 * K, and ~f~~ * K3 by, a polygonal 
disk D,  in S3 so that d14 * K ,  u D,  u a,4 * K, v D, v A,4 I K ,  is a 
polygonal disk disjoint from ( U:=4 di4 * Ki)  U q. This process is 
continued so that a," k -+ co the diameter of D, tends to 0 and we let D 
denote the disk (Ui=,(di4 * Ki u Di))  v q. As is indicated in Fig. 2.3.1, it 
is easy to get a homeomorphism h: d - D of a 2-simplex A onto D 
such that h I ( A  - h-l(q)) is PL. 

Suppose that h is tame, that is, suppose there is a homeomorphism 
f: S4 + S4 such that fh: d -+ S4 is PL. Then, by Corollary 1.6.3, 
{h(a,")} contains a point h(dj4) that lies in the interior of a disk formed 
by the union of one or two 2-simplexes in a triangulation offh(A). But, 
then the first local homotopy group at h(di4) must be infinite cyclic. 
However, this cannot be the case for by Proposition 2.3.3, the first local 
homotopy group at 8: is .rr,(Bd A? - K j )  which we showed to be non- 
Abelian in the last section. 

To  construct a wild 2-sphere 2 in S4 simply add to the disk D 
constructed above, the cone over Bd D from a point in the interior of S!. . 

There is a tame nonlocallypat (n - 2)-cell Dn-2 and Example 2.3.2. 



60 2. Wi ld  Embeddings, Knotted Embeddings, and Related Topics 

a tame nonlocally $at (n - 2)-sphere Zn-, in Sn, n 3 4. (Notice that this 
theorem is false for n = 3 by Exercise 2.1.1.) 

By Example 2.2.1, there is a P L  ( n  - 3)-sphere Cn+ in 
Bd P w 5’n-l such that .rrl(Bd In - ZnP3 ) + 2. Let z, be a point in 
Int In and let DnP2 = v c Zn-3. By Proposition 2.3.3 the first local 
homotopy group of Dnn-, at v is not 2, hence Dn-, cannot be locally flat. 
By using a suspension rather than a cone we could construct Zn-2. 

PROOF. 

2.4. WILD I-CELLS, I-SPHERES, ZCELLS, 

AND 2-SPHERES IN S3 

Before beginning our constructions of wild embeddings we will discuss 
direct limit groups. A relation < on a set h is a subset of h x A. 
If (x, y )  E <, we write (x, y )  as x < y and say that x is less than y .  A 
relation < is a partial order relation provided that (i) if x < y ,  then 
y < x is false, and (ii) if x < y and y < z then x < z. A set A is a 
directed set if h is partially ordered by a relation < such that (iii) for 
any pair of elements x, y in h there is a x E h such that z > x and z > y .  
(Thus, the set of positive integers is directed.) Let G = {Gx}xEA be a 
collection of groups indexed by a directed set A. For each x and y in h 
such that x < y or x = y  suppose that there is a homomorphism 
H,Y: G, -+ G, of G, into G, . If H denotes the set of all such homo- 
morphisms H,,, then (G, H )  is said to be a direct homomorphism 
system if (i) H,” = 1 for each x in A, and (ii) if x < y < z then 
H,”H,” = H,”. 

We will now define the direct limit group G‘ of a direct homo- 
morphism system (G,  H ) .  Let G ,  be the set of elements {g,},EA’, g, E G,, 
A’ C A, such that if x E A‘ and H,, E H then y E A’ and g, = H,Y(g,). 
Define an equivalence relation w on G, by letting {gx},EI\’ M (g},EAn if 
for some group of G their coordinates are defined and are equal. The  
elements of G’ are the equivalence classes of w. Let g,  and g,  be two 
elements of G’ and let {g,},EA’ and {g,}@* be representatives of g, 
and g, , respectively. Let {gx),EA’ + {g,}a(Ehn be the element of G, 
obtained by adding the coordinates of {gx}zEAf and {gY}YEh* which lie 
in a common group of G. Then, g, + g, is defined to be the equivalence 
class of {gZ}xEA, + {gY},EAe under w. I t  is easy to show that G’ constitutes 
a group with addition so defined. 

An alternate definition of the direct limit group G‘ of a direct homo- 
morphism system (G, H )  which is maybe a little more elegant than the 
above definition, although equivalent, will now be given. Let G, 
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denote the weak direct sum of the groups in G, that is, all sets { g x } x e A ,  
where g, E G, and all but a finite number of the g, are the identity, and 
coordinatewise addition. Let the injection i,: G, -f GXEA G, be defined 
by i,(g,) = {gx},EA , where g, = g, if x = y andg, = 1 if x # y .  Then, 
G‘ has the following presentation: 

[k(g,) I g, E G, 2 Y E A: iv(Hz’(gz)) - i z (gz )  I gz E Gz > *, Y E * < YI. 

I n  the following material we will make use of the next two lemmas. 

Lemma 2.4.1. Let M ,  C M2 C be spaces such that each Mi is open 
in M = Uizl Mi and choose a base point in M I  . Then, r , (M)  is the direct 
limit group of the direct homomorphism system (n,(Mi), i = 1,2, ... , fi , 
i = 1, 2, ...), where f i :  7rl(Mi) -+ rl(Mi+,) is the injection. (Technically, 
we should say ‘Linclusion induced homomorphism” rather than 
“injection”; however, we will use these terms synonymously.) 

m 

EXERCISE 2.4.1. Prove Lemma 2.4.1. 

Lemma 2.4.2. If (G, ,  i = 1, 2, ... , f i :  Gi+Gi+, ,  i = 1, 2,  ...) is u 
direct homomorphism system where Gi has a presentation [Xi: Ri], then 
the direct limit group G has the presentation 

We are now ready to begin our construction of a wild arc in S3. (This 
example, as well as the six examples which follow, is taken in substance 
from the classical paper [Fox and Artin, I].) Consider P. Let 
A- = I 2  x {-I} and A+ = I 2  x {I}. Then the points r- = (0, - 3, - I ) ,  
s- = (0, 0, -1) and t-  = (0, 3, -1) are on A- and the points 
r+ = (0, -3, I ) ,  S+ = (O,O,  1)  and t+ = (0, 4, 1) are on A+.. In  I3  
construct three nonintersecting oriented polygonal arcs K- joining s- 
to r- , KO joining t -  to s+ , and K ,  joining r+ to t ,  . These arcs which have 
only their end-points in common with Bd l3 are to be arranged as 
indicated in Fig. 2.4.1. Denote the union of K- , K O ,  and K+ by K .  

Consider the suspension Y(12) of 1 2  from the points p = (0, 0, -1) 
and q = (0, 0, 1).  Divide Y(12) into an infinite number of sections by 
the family of parallel planes z = &(i - 1)/i, i = 1 ,  2, ... (see Fig. 2.4.2). 
For each positive integer n let D, be the section 

(. - I)/. < z < ./(. + 1) 

intersected with S(I”), for each negative integer n let D, be the section 
-n / (n  - 1) ,< z < - (n  + I ) /n  intersected with Y(P) and let Do = 8. 
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Z 

X 

\ 

Figure 2.4.1 

Figure 2.4.2 

Let 7r3: I3  --f I2 be defined by r3(x, y,  z) = (x, y ,  0). For n = 0, 1, 2 ,... 
let In2 be the intersection of the plane z = n/ (n  + 1) with 9(12) and for 
n = -1, -2, ... let In2 be the intersection of the plane -n / (n  - I )  
with Y(12). For each integer n let I',: I2 - la2 be the projection of I2 
onto In2 from p if n < 0 and from q if n 2 0. Now for all integers n # 0 
let f,: I s  - D, be defined by letting 

f n  I A- = Ir,,, I A- ) 

r,,-pr3 I A _ ,  if n 3 1 
if n < - 1  

r n n 3  I A+ 9 if n > l  
f n  / A +  = Irn+p3 I A + ,  if n < - 1  

and then extending linearly over segments in Is which connect a point in 
A- with a point in A having the same first two coordinates. 

Let X = p u (Ufl (f,(K) uf- ,(K))) U q. Then, X has the regular 
projection into the yz-plane given in Fig. 2.4.3. 

Example 2.4.1 (Fox and Artin). The complement of the arc X 
constructed above is not simply connected. (In fac t ,  7r1(S3 - X )  is non- 
Abelian.) Hence, X is wild. 
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PROOF. By Lemma 2.4.1, r1(S3 - X )  is the direct limit group of the 
direct homomorphism system (rl(Mi), i = 1, 2, ... , fi , i = I ,  2, ...) 
where 

and fi: nl(Mi) + T ~ ( M ~ + ~ )  is the injection homomorphism. We now 
obtain a set of generators and defining relations for r,(Mi) by employing 
a slight generalization of the algorithm discussed in Section 2.2. Thus, 
rl (Mi)  is generated by the elements (J;,-i+l{aj , b, , ti} indicated in 
Fig. 2.4.3 and has the following defining relations: 

b- ,+ la~~+lc~f+ ,  
j=- i  

m 

ciaib;' (relation about u D,),  
+i+l 

Figure 2.4.3 

The  injection homomorphism fi: rl(Mi) + maps each 
generator of the set (J;=-i+l {aj , b, , c3} of generators of r l (Mi )  into the 
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same-named generator of T ~ ( M ~ + ~ ) .  Hence, it follows from Lemma 2.4.2 
that 7rl(S3 - X )  has the following presentation: 

1 
1 w [ ij {b ,  , c,}: (J {cic;lci~lc,b;l, b, = c;:lc;~ci-lc,ci+l , C i + l  = b;lbi+lbi} 

w [ (J {b,  , c,}: u {bi = C l - l C , ,  b, = c;;lc~~ci-lcici+l, C i + l  = b 3 , + , b i } ]  

m 

(J {a, , bi , c,}: (J {c,a,b;', ai+1 = C;:lciCi+l, bi = C;:laiCi+l, C , + l  = b;lb,+lb,} 
f i = O  fi=O 

m 

f i = O  fZ=O 

m m 

f i = O  *i=O 

m 

f i = O  f i = O  

We will show that this group is nontrivial by giving a homomorphism 
h of it onto the nontrivial, non-Abelian subgroup of the symmetric 
group Ss of degree five generated by the cycles (12345) and (14235). We 
define h by h(cJ = (12345) if i is odd and h(ci) = (14235) if i is even. 
I t  follows that h induces the desired homomorphism since 

(a) for i even, 

~ ( C ~ - ~ C , C , + ~ )  = h(ciPl) h(ci) h ( ~ , + ~ )  = (12345)( 14235)( 12345) 

= (142) = (14235)(12345)(12345)(14235) 

= h(c,) h(c,+1) h(c,J h(c,) = h(c,c,+lc,-lc,), 

(b) for i odd, 

h(ci-lcic,+J = h(ci-1) h ( ~ i )  h(c,+l) = (14235)( 12345)( 14235) 

= (345) = (12345)( 14235)( 14235)( 12345) 

= h(c,) h(c,+l) h(c,-1) h(-cj) = h(C,Ci+1C,-1C,). 

This completes the proof of Example 2.4.1. 
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Lemma 2.4.3. If q is an end-point of an arc Y which is tamely 
embedded in S3 and { Vi} is any sequence of closed neighborhoods of q such 
that V,  3 V ,  3 and ()+, Vi = q, then there is an integer N such that 
the injection n,( V, - Y )  -+ nl( V ,  - Y )  is trivial. 

By Exercise 2.1.1, there is a homeomorphism of S3 which 
takes Y onto [0, 11 and takes q onto the origin 0, and so we may assume 
that Y is [0, I] and q is 0. Let { Vi} be a sequence of closed neighborhoods 
of 0 such that V ,  3 V ,  3 ... and ni=, Vi = 0. Choose an E > 0 such 
the open ball B, about 0 of radius E is contained in V,  and choose an 
integer N such that V,  C B,  . Also choose a point in V, - [0, 13 to 
serve as the base point for the fundamental groups nl( VN - [0, l]), 
nl(Bf - [0, 11) and n,( V ,  - [0, 11). Since the injection of xl( V,  - [0, 11) 
into nl( V,  - [0, 11) is the composition of the injection of nl( V, - [0, 11) 
into nl(BE - [0, I]) and the injection of nl(Bf - [0,1]) into nl( V,  - [0,1]) 
and since nl(B, - [0, 11) is trivial, it follows that the injection of 
nl( V,  - [0, 11) into n,( V ,  - [0, 11) is trivial. 

m 

PROOF. 

m 

Consider the arc Y which is the set 
m 

f-l(&) u f-lW+) " u f n ( W  u 4.  
n=l 

Then, Y has the regular projection into the yz-plane indicated in 
Fig. 2.4.4. 

\ 

I VI 

Figure 2.4.4 

Example 2.4.2 (Fox and Artin). The arc Y is wild and its complement 
is an open 3-cell. (Thus, Y is wild and cellular in S3.) 

First we will show that the complement of Y is an open 
3-cell. By fattening up Int Y,  it is easy to construct a closed 3-cell D in 

PROOF. 
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S3 for which there is a homeomorphism h: (I3, [0, 11) - (D, Y) .  Let 
g: I3  ++ I3  be a map such that g I Bd I3  = 1, g([O, I]) = (1, 0, 0), and 
g I I3  - [0, 11 is a homeomorphism. Now define a map h: S3 --H S3 by 
A 1 S3 - D = 1 and h 1 D = hgh-1. Then h I S3 - Y :  S3 - Y - S3 - q 
is a homeomorphism and so S3 - Y is an open 3-cell. 

We will now show that Y is wild by showing that it does not satisfy 
Lemma 2.4.3. Let { V,} be the sequence of closed 3-cell neighborhoods 
of q indicated in the above figure. This sequence clearly satisfies the 
hypotheses of Lemma 2.4.3. By the proof of Example 2.4.1, nl( V, - Y )  
has the presentation [ u ~ = N ( c , } :  U&,{cici+lci-lci = c + ~ c ~ c ~ + ~ } ] .  If the 
injection nl( V, - Y )  --f nl( Vl - Y )  were trivial, then each element 
ci , i >, N ,  would be trivial in r l ( V 1  - Y ) .  However, by the proof of 
Example 2.4.1, if we let h(ci) = (12345) if i is odd and let h(c,) = (14235) 
if i is even, then h induces a homomorphism of rl(V1 - Y )  into the 
symmetric group S, . Since no ci goes onto the identity permutation 
under h, it follows that no ci is trivial in rl( Vl - Y) .  

Let X be the arc of Example 2.4.1 and let X'  be the corresponding 
arc pictured in Fig. 2,4.5. 

Figure 2.4.5 

Example 2.4.3 (Fox and Artin). Even though the simple closed curve 
X U  X' is nice in the sense that it obviously bounds a 2-cell D ,  it is still 
wild. In fact, r1(S3 - ( X  U X ' ) )  is non-Abelian. (Of course, the 2-cell D 
is then also wild.) 

Proof. The fundamental group of the complement of X u X' maps 
homomorphically by injection onto the fundamental group of the 
complement of X and is therefore non-Abelian by Example 2.4.1. 

Let Y be the arc of Example 2.4.2, let Y' be the corresponding arc 
in Fig. 2.4.6 and let I be a segment connecting the left-hand end-points 
of Y and Y'.  
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Figure 2.4.6 

Example 2.4.4 (Fox and Artin). The simple closed curve Y U Y' u 1 
is wild though the fundamental group of its complement is infinite cyclic 
and it obviously bounds a 2-cell D.  (Of course, the 2-cell D is wild.) 

This simple closed curve is wild since by Example 2.4.2 the 
arc Y is wild. It is straightforward to calculate the fundamental group 
of its complement and check that it is infinite cyclic. 

By fattening up Int X one can easily construct a homeomorphism 
f: (I3,  1') + S3 such thatf(1l) = X where X is the arc of Example 2.4.1. 
For instance, choose f so that f (13)  is as depicted in Fig. 2.4.7. 

PROOF. 

Figure 2.4.7 

Example 2.4.5 (Fox and Artin). 

PROOF. 

The 2-sphere f(Bd 13) has a non- 
simply connected complementary domain, hence is wild. 

Clearly S3 - X is of the same homotopy type as S3 - f ( 1 3 )  
and since v1(S3 - X )  is nontrivial by Example 2.4.1, it follows that 
S3 - f ( 1 3 )  is nonsimply connected. 

As mentioned in the proof of Example 2.4.2, it is easy to construct 
a homeomorphism h:  ( 1 3 ,  [0, 13) -+ S3 such that h([O, I]) = Y ,  where Y 
is the arc of Example 2.4.2. Let h(13) be as indicated in Fig. 2.4.8. 
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Figure 2.4.8 

An (n - 1)-sphere in Sn is said to be weakly flat if both of its 
complementary domains are open n-cells. 

Example 2.4.6 (Fox and Artin). The 2-sphere h(Bd13) is weakly 
$at but wild (hence not p a t ) .  

Example 2.4.6 can be established by making slight modifications in 
the proof of Example 2.4.2. 

Consider the arc 2 = Y u Y,  whose projection into the yz-plane is 
shown in Fig. 2.4.9. (Think of 2 as being polygonal modulo the end- 
points, but having such a fine triangulation that you cannot distinguish 
the 1 -simplexes.) 

Figure 2.4.9 

Example 2.4.7 (Fox and Artin). The complement of the arc 
2 = Y u Y,  is simply connected, but is not an open 3-cell. Hence 2 is not 
cellular. However, the arcs Y and Y ,  are cellular. 

The  fact that Y and Y,  are cellular follows from Example 2.4.2. The 
interested reader may refer to the paper of Fox and Artin [l]  for the 
rest of the proof of this example. 

The  next example was given in [Harley, I]. An example with similar 
properties for dimension four is given in [Glaser, 51 and for dimensions 
greater than four in [Glaser, I]. Both Harley and Glaser show that the 
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product of their examples with I is a cell. Other work related to these 
examples is mentioned at the end of Section 2.5. 

Example 2.4.8 (Harley). 

(a) 

(b) 
PROOF. 

There is a nonmanifold X such that 
X is the union of two 4-cells whose intersection is a 3-cell in the 

X is the union of two 4-cells whose intersection is a 4-cell. 
boundary of each, and 

Consider l4 to be I 3  x I .  Put D, = I 3  x 0. Then, Bd D, 
separates Bd l4 into two 3-cells. Let Y u Y ,  be the arc of Example 2.4.7 
embedded in Bd I 4  in such a way that one end-point lies in each comple- 
mentary domain of Bd D, and Y u Y ,  intersects Bd D, in the common 
end-point of Y and Y ,  (see Fig. 2.4.10). Let D, = l3 x [-I, 01 and 

Figure 2.4.10 

D, = l3 x [0, 13 where the notation is chosen so that Y C D,  and 
Y,, C D, . Put X = 14/Y u Y ,  . Since Y u Y,, is not cellular in Bd 14, 
X is not a manifold. Since Y is cellular in Bd(D,) and Y ,  is cellular in 
Bd(D3), both D,/Y and D,/Y,, are 4-cells. Hence (a) is satisfied. Let 
Y(13)  be the suspension of 1, from the points (0, 0, 0, i) and (0, 0, 0, - h). 
Then, ( D ,  u 9(13) ) /Y  and (0, u 9(13)) /Y , ,  are 4-cells satisfying (b). 

There is a 2-spheve H (The Alexander 
horned sphere) in S3 which has an open 3-cell for  one complementary 
domain and which has a nonsimply connected 3-manifold for  the other 
complementary domain. Also, this 2-sphere fails to be locally flat  at exactly 
a Cantor set of points. 

The  construction of Alexander’s horned sphere H (originally given in 
[Alexander, 21) is indicated in Fig. 2.4.11. Perhaps the easiest way to 
show that the exterior complementary domain of H is not simply 
connected is to show that the simple closed curve J cannot be shrunk 
to a point in the exterior by employing Theorem 9 of [Bing, 81. 

Example 2.4.9 (Alexander). 
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Figure 2.4.11 

Another way to show that the exterior is nonsimply connected is to 
notice that it is homeomorphic to the complement of the pictured 
graph I' (Fig. 2.4.12) and to get a presentation for 7r1(S3 - r) and 

Figure 1.4.12 

show the resulting group nontrivial. This is done in [Blankenship and 
Fox, I]. 
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A segment G b  is said to pierce a sphere S at x if S n z b  = x and 
a, b belong to different components of E3 - S. 

Example 2.4.10 (Fort). There is a wild 2-sphere P (called the wild 
porcupine) which can be pieced at each point with a straight line segment. 
(This example answered a question asked by Bing.) 

The  first such example was given in [Fort, 11. The version of Example 
2.4.10 given here is due to Bing [9]. This example is an “Alexander 
horned sphere,” however, the construction is modified so that we will 
have the piercing property. The  construction is indicated in Fig. 2.4.13. 

Figure 2.4.13 

Example 2.4.11 (Antoine). There is a Cantor set A in S3 (called 
Antoine’s necklace) which is not embedded equivalently to the standard 
Cantor set. In  fact, S3 - A is not simply connected. 

The Cantor set we are about to construct first appeared in [Antoine, 
1, 21. Let T be a solid torus and let T I  , T 2 ,  T ,  , and T4 be four solid 
tori embedded in T and linked as shown in Fig. 2.4.14. (We could take 
any number of such tori but four makes a good picture.) In  each T i ,  
let T:, T2i, Tai, and T4i be four solid tori embedded and linked in Ti 
as the Ti are embedded and linked in T. Continue inductively in this 
manner. At the ith stage, there are 4i tori, whose union we call Xi . Then, 
Antoine’s necklace A is Xi. By the finite intersection property, A 
is nonempty. In  fact, it can be shown that A is a totally disconnected, 
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Figure 2.4.14 Figure 2.4.15 

compact, perfect metric space, hence a Cantor set. It is shown in 
[Coelbo, I] that the simple closed curve J cannot be shrunk to a point 
without hitting A .  In  [Blankenship and Fox, 13 a presentation of 
T,( T - A )  is obtained by taking the direct limit of a sequence of graphs, 
the first of which is indicated in Fig. 2.4.15. Then, a presentation for 
.rr,(S3 - A )  is easily obtained and shown to be nontrivial. 

Example 2.4.12. A 2-sphere which has the same properties of Example 
2.4.9 can be constructed using Antoine’s necklace. (This was probably the 
first known wild 2-sphere.) 

Spheres such as the one we are about to construct appeared in 
[Antoine, 21 and [Alexander, 31. Let So be a 2-sphere lying outside the 
torus T of Example 2.4.11. Alter So by removing a small disk and 
replacing the hole with a tube which runs to T and is capped off on 
Bd T .  This yields a 2-sphere S, . Cut four small holes in the disk 
S,  n Bd T and run tubes to T I ,  T,  , T ,  , and T4 and cap them off in 
a similar manner forming S, . By continuing in this fashion we construct 
a 2-sphere S (= lim Si) which contains Antoine’s necklace as indicated 
in Fig. 2.4.16. The  2-sphere S is wild because since the simple closed 
curve J cannot be shrunk in the complement of A ,  it certainly cannot be 
shrunk in the complement of S. 

Example 2.4.13. There is a 2-sphere S (called Bing’s Hooked Rug) 
in S3 and a simple closed curve J in S3 - S such that J cannot be shrunk 
to a point in S3 - S, but for  each disk Y in S, J can be shrunk to a point in 
S3 - Y.  Furthermore, each arc in S is tame. 
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Figure 2.4.16 

The construction of the hooked rug is suggested by Fig. 2.4.17. Also 
indicated is the simple closed curve J satisfying the example. For a 

Figure 2.4.17 

complete proof the interested reader is referred to [Bing, 81. (To read 
this paper is a nice way to satisfy one’s geometrical appetite for the day.) 

I n  [Alford, I], Bing’s construction is modified to produce uncountably 
many nonequivalent 2-spheres in S3. Fig. 2.4.18 illustrates an Alford 
wild 2-sphere which has an arc of wild points. 
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Figure 2.4.18 

For a good survey paper on surfaces in 
[Burgess and Cannon, 11. 

E3, the reader is referred to 

2.5. E" MODULO A N  ARC CROSSED WITH E' IS En+' 

Although the main objective of this chapter is to construct wild and 
knotted embeddings, we do not concern ourselves with such constructions 
in this section. However, we will use the main result of this section to 
construct wild cells and spheres in high dimensions in the next section. 
Furthermore, the results of this section are of independent interest. 
In  1958, Bing [12] gave an example of a nonmanifold (his dogbone 
space) whose product with El is E4. Andrews and Curtis [I] used Bing's 
technique of proof to show that En modulo an arc crossed with El is 
E n f l .  First, we will establish a preliminary theorem that is a corollary 
to a result of Klee [l]. The  rest of this section will be based on the papers 
of Bing and of Andrews and Curtis just mentioned. 

Flattening Theorem 2.5.1 (Klee). Every k-cell D in En is Jut in 

E n f k  = E" x E k .  

PROOF. Since D is a k-cell, there is a homeomorphism f* from the 
closed subset D of En onto Ik C Ek. Hence by Tietze's extension theorem 
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f.+ extends to a map f :  En + I k  C Ek. Define +f: En+k + En+k by 
+r(x, y )  = (x, y + f (x)) for x E En, y E Ek. Notice that is a homeo- 
morphism of En+k onto itself which carries each “vertical” k-hyperplane 
onto itself. Since D C En, all points of D are of the form (x, 0) E En+k 
and so ~&(x, 0) is of the form (x, f (x)). Thus, no two points of +r(D) have 
the same last k coordinates because f is one-to-one on D. 

Let r be a retraction of Ek onto Ik and let g: Ek --t En be defined by 

for x E En, y E Ek (see Fig. 2.5.1). Notice that $g is a homeomorphism 
g ( y )  = -f ;‘r(y). Define #g:  E n f k  - E n f k  by #g(x,y) = (x + g ( y ) ,  y )  

E n t k  

I k  r 
L 
/ 

Figure 2.5.1 

of En+k onto itself which takes each “horizontal” n-hyperplane onto 
itself. Now we will show that #g+f: En+k + En+k is such that #&!(D) = 
I k  C Ek C En x Ek. Suppose (x, 0 )  E D. Then, #g+r(x, 0) = #g(x, f (x)) = 

where f (x) E I k  C Ek. Since f I D = f* is a homeomorphism of D onto 
Ik ,  the proof is complete. 

(x + g ( f  ( X ) > , f  (4) = (x + ( - f  , ‘ f ( x h f  (4) = (x - x , f  (4) = ( 0 , f  (4) 

Factorization Theorem 2.5.2 (Bing). Let C = ni Ti where each Ti is 
a compact nekhborhood of C in En and Ti+, C Ti for  each i. Suppose that 
for each i and E > 0 there is an integer N and an isotopy p1 of En+l onto 
En+l such that po = identity, pl is unqormly continuous and 

(1) 11.1 I (En+1 - (Ti x El) )  = I ,  
( 2 )  p l  changes (n + 1)st coordinates less than E ,  and 
(3) for each w E El ,  diameter pl( TN x w) < E .  

PROOF. 

Then, ( E n / C )  x El m En+l. 

Consider the upper semicontinuous decomposition G’ of 
En+l whose elements are of the form g x w, where g E En/C and w E El .  
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If the space corresponding to G' is B', then it is clear that 
( E n / C )  x El m B'. We will show that ( E n / C )  x El is topologically 
En+l by showing that B' is topologically En+l. To do this it will suffice to 
show that there is a pseudo-isotopy f l  of En+l onto itself (that is, f t  is a 
homotopy such that f l  is a homeomorphism for 0 < t < 1)  such that 
fo = 1 and fl takes each element of G' onto a distinct point of En+l. We 
will obtain the pseudo-isotopy ft by a sequence of applications of the 
isotopy pl in the hypothesis of Theorem 2.5.2. 

Let e l ,  E, , ... be a sequence of positive numbers with a finite sum. 
We will define a monotone increasing sequence v1 = 1 ,  T , ,  v 3 ,  ... of 
integers and a sequence of isotopies fi, i = 1, 2, ... , (i - l)/i < t < 
i/(i + 1) of En+l such that 

Before constructing the sequence f:) i = l ,  2, ... , we will show that the 
existence of such a sequence implies the existence of the pseudo-isotopy 
ft that we seek. 

Let f l ,  0 < t < 1, be defined by f l ( x )  = f : ( x )  if (i - l ) / i  < t < 
i/(i + 1). If we define f l  by f l ( x )  = lim,,,f(x, t ) ,  then Condition 5 
implies that f l  is a map of En+l and so f i ,  0 < t < 1 ,  so defined is a 
pseudo-isotop y. 

Condition 4 insures that fl(g) is a point for g E G'. 
Condition 3 implies that if fl(gl) = f,(g,), g, , g, E G', then one of 

g, , g, is above the other in the w direction. This is the case since if g, 
and g, are in the same level then either g, or g, (say 8,) is a point of 
En+l, but then there is an integer i so large that f(i-l)/i I N = fl I N for 
some neighborhood N of g, . 

Finally, by employing Condition 6 one can show that no two points 
with different w coordinates go into the same point under fl . 

The existence of fll and v, follow directly from the hypothesis of 
Theorem 2.5.2, and so we proceed inductively to define ft and qi+l . Let 
y be a positive number so small that 

diameterff~!_l,)li(T,,t x [a, b ] )  < 2eiV1 if I b - a I < y. 
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The existence of such a y follows from Condition 4 and the uniform 
continuity of f lz l ) / i  . 

Let 6 be a positive number so small that for each set S of diameter 
less than 6, diameter ff&,,i(S) < ei . 

By the hypothesis of Theorem 2.5.2, there is an isotopy p, ,  
(i - l)/i < t < i/(i + l), of En+l and an integer qi+l such that 

t t ( i - l ) / i  = 1, 

pt I (En+' - (Tni x El)) 1, 

p t  changes (n  + 1)st coordinates less than Min(y, E ~ ) ,  

diameter pii(i+l)(T,i+l x w) < 6, w E El ,  

and 
is uniformly continuous. 

Now define, ft = ftL1l),i p i .  Then, f> clearly satisfies Conditions 1 
and 2. I t  satisfies Condition 3 because p1 I (En+' - (T,[ x E l )  = 1. It 
satisfies Condition 4 because diameter pi/(i+l)(T,[+l X w )  < 6. It 
satisfies Condition 5 because 

diameterff~21~li(Tni x [a, b ] )  < 2ci-' if I b - a I < y,  

and p1 changes (n + 1)st coordinates less than y.  It satisfies Condition 6 
because p(i+l), i(En x w )  < En x [w - ei , w + ei] and 

This completes the proof of Theorem 2.5.2. 

T o  show that (En modulo an arc a) x El is En+l, we will apply 
Theorem 2.5.2 where the set C is an arc. Thus, we must show how to 
construct the isotopies pt of the hypothesis. However, before doing 
this we will construct the neighborhoods Ti of 01 and some appropriate 
( a  + 1)-cells. 

In  this section let I denote [0, 11 C El C En x El. For j = 4, 5, ... 
let Pi be the neighborhood of I consisting of a chain of (n  + I)-cubes 
Pi1, Pi2, ..., Pi-1 of side length ( j  + 2) / j ( j  - l ) ,  Pi1 having one face 
at - l / j  as in Fig. 2.5.2. By Theorem 2.5.1, there is a homeomorphism 
v: En+l - En+l such that ?(I) = a. Let v(Pi) = Qi and v(PjA) = QiA. 
We denote the intersection of the Q's with the n-plane En by 
Q j  n En = Ri and QiA n En = RiA. 
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We can choose a subsequence {Pi} of {P,}, j = 4,5, ... such that 

(a) 
(b) 

For each i, diameter QiA < l/i, 
For each i and each h there is an s such that 

Qi+l C (Ris  u R:") x El,  

(c) For each i and s, there is a h such that Qi+l C Ria x El, and if 
p < A, then Q$+l C (Ril u RS2 u 

Conditions (a), (b), and the first part of (c) obviously may be satisfied. 
It is easy to show that the last part of (c) follows from the other conditions. 

Let Ti = Rzi . Then {Ti} will be the sequence of neighborhoods for 01 

for which we will construct the isotopies required by Theorem 2.5.2. 

u Ria) x El. 

Figure 2.5.2 

Lemma 2.5.1. Given Tk and real numbers E > 0, a < b, there exists 
an ( n  + 1)-cell E such that 

Tk X [a - E ,  b + €1 r) E 3 Int E 3 Tk+1 X [a, b ] .  

PROOF. Recall that Tk = q)(Pzk) n En and Tk+l = v(Pzk+z) n En. 
The  (n + ])-cell E will be obtained as a homeomorphic image of the 
(n  + 1)-cell PZkf l  . Let w be the El coordinate for En+l = En x El.  

Let 'pl  be obtained from y by adding ( a  + b)/2 to the w-coordinate of 
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each image point. Let p2 be obtained from p1 by compressing the 
w coordinate toward w = ( a  + b) /2  sufficiently so that 

' d P 2 k + l )  Tk (a - E j  + €1- 
This is possible because of Condition (b) on the Q's and R's. Let 8" 
be the n-plane w = ( a  + b)/2,  and let N be a nice neighborhood of 
y,( T k + l )  in bn with N in 9)2(PZk+l) (see Fig. 2.5.2). For each y E T,,, , 
let gU be the vertical line segment from ( y ,  a - e )  to ( y ,  b + E). 

Let d be the minimum vertical distance from Tkfl X ((a + b)/2)  
to the complement of T~(Z',~+~). Let 0 stretch the part of Yu ( y  E T k f l )  
between ( y ,  ( (a  + b) /2 )  - d )  and ( y ,  ( ( a  + b /2 )  + d )  to the part between 
( y ,  a )  and ( y ,  b) and compress the rest of Yv, leaving the end-points 
fixed. Then, 0 can be extended to an isotopy which moves points only 
vertically and is the identity outside of N x [a  - c, b + €3. The  cell 
E = 0p2(PZkfl) satisfies the lemma. 

Lemma 2.5.2. Given Tk and any integer m > 2, there exists a sequence 
E l ,  E, , ..., Ern-, of (n + 1)-cells such that 

(Tk x [ 0 , 2 m - 3 ] ) 3 E ~ , 3 ( T k + l  x [1 ,2?f l -4] )3" '  

3 Ern-, 3 ( T k + m - 2  x [m - 2 ,  m - 1 3 ) .  

Furthermore, each E,  may be written as the union of cells Ulr, UZr, ..., Upr 
such that Ulr C U,, C 

is the union of cells Opz(P{(k+r)-l where p < A: and A; is such that 
C UpT = E, and each U /  

(a) 
QA: 

B(k+r)-1 Rz"k " 
and 

(b) 

PROOF. The  existence of the sequence E l ,  E2 , ..., Em-2 follows 
immediately from Lemma 2.5.1. The  cell E of Lemma 2.5.1 may be 
written as the union of cells &p2(P{k+l). Also by Condition (c), we may 
write E as the union of cells Ul , U ,  , ..., Up such that 

u,' c (R& U Rik U * * *  U R:;') X El .  

U I C  U 2 C . - . C  U ,  = E 

and each U ,  is the union of cells Oyz(P{,+l) where p < A, and A, is 
such that 

Qi;+l C R i l l  x El C Tk x El. 

Hence, we see that 

U ,  C (Rik  u Rik u * * .  u R i l l )  x El, 
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because By, moves points only vertically after the homeomorphism tp, 
Thus, we can decompose E, as indicated in Lemma 2.5.2. 

Lemma 2.5.3. Let A be a closed n-cell which is the union of two 
n-cells A, and A, such that A,  n A, = A, n A, is an (n  - 1)-ceZZ. Let B 
be a closed subset of A such that B n A C A,. Then, there is an isotopy 
A: A x I + A such that A, is the identity, A t  I A is the identity, and 
A,(B) C A, (see Fig. 2.5.3). 

Figure 2.5.3 

PROOF. Let p be a point in A ,  - A,. Let h be a homeomorphism of A 
onto the closed unit ball B in En. Let y be an isotopy stretching the rays 
toward h ( p )  with y o  the identity, and y,(h(B)) C h(A,). Then, h-lyh is 
the required isotopy. 

Lemma 2.5.4. Let 

L, = [0, 13 u [2m - 4, 2m - 31, 
L, = [ I ,  21 U [2m - 5 ,  2m - 41, ..., LmP3 = [m - 3, m]. 

Also, 

Jo = [0, 2m - 31, J1 = [ I ,  2m - 41 ,..., = [m - 3, m]. Let {Ti} be 
the sequence of neighborhoods of OL previously constructed and let Tk E { T J ,  
with C, , ..., C, being the chain of Rik’S in Tk . Then, there is an isotopy 
of En+l starting with the identity and ending with a homeomorphism h 
of En+l onto itself such that 

h = 1 outside of Tk x Jo , 

h = 1 on (C, u C, u . * *  u C,) x Lo , 

h = 1 on (C, u C, u u C,) x L, , 

h = 1 on C, x LVLp3, 
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W k  n (Cl u C d  x Lo) c (Cl u CZ) x J o  ? 

h((Tk+, n (Cl u c2 u C3)) x Ll) c (CZ u C3) x J o  9 

h((Tk+,-3 n (C, u C, u ... u C,-,)) x L3) C (G2 u C,-J x Jo . 

PROOF. We will just construct the homeomorphism h as 

h = hm-3hm4 ... h, , 

and since each hi will be obtainable by an isotopy starting at the identity, 
so will h. 

Let El be broken into (n  + 1)-cells Ull, Uzl, ..., U& as 
2.5.2 (see Fig. 2.5.4). Let B = (Tk+, x J1) n Ull, 

2m-3.11 

2m-4=10 

2m-5= 9 

2m-6  = 8 

m - l  = 6 

m-2.5 

m-3.4 

1 

in Lemma 
A = Ull, 

- E l  

-h i (E2) 

- 
E "  

Figure 2.5.4 

A, = 09),(P%+,), and A, = Cl(A - A,) = up<All Op),(Pgk+,). Take h, 
to be the homeomorphism given by Lemma 2.5.3. We note that 

h, = 1 outside Vll C (C, u C,) x Jo , 
h, = 1 on (C3 u ... u C,) x I , ,  
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and 
h,((T,+, n (C, u C,)) x 1,) c a,(ei+,) c c, x l o  * 

Now let E,  be broken into (n + 1)-cells U12, U22, ..., U& as in  
Lemma 2.5.2. Then,  hl(E2) is broken into (n  + 1)-cells 

h,(U,2), hl(U,2), *** ,  hl(U;J. 

Again we apply Lemma 2.5.3 with I3 = h1((Tk+, X 1,) n Uz2), 
A = h,( UZ2), A, = hl0v2(P&,)and A, = Cl(A - A,) = U,<A,ah1dvz(PiL+z). 

Hence we have a homeomorphism h, such that 

h, = 1 outside of h1(Uz2) C (C, U C,) x lo , 
h, = 1 on (C, u - - *  u C,) x lo , 

h,hl((T,+, n (C, u c, u C,)) x J z )  c: c, x l o  * 

Now h,h, = h, outside h,l(UZ2),  and h;l(Uz2) n (En  x Lo) = 8 by 
Lemma 2.5.3 so that we have 

h,h,((T, f l  (Cl u C,)) x Lo) = hl((T, n (C, " C,)) x Lo) c (C, u C2) x l o  * 

T h e  remaining hj's are constructed similarly, and h = h,-3h,-4 ... h, 

REMARK 2.5.1. Intuitively we may view the proof of Lemma 2.5.4 as follows: 
Suppose we have a collection of m - 3 worms, and suppose one of the worms 
swallows another worm tail first, and is then himself swallowed tail first by a 
third worm. Let the feast continue in this fashion until there is only one worm 
remaining. Now the fattest worm pulls in his tail a little way and in doing so he 
pulls in the tails of all of the worms inside him. Next, the second most fat worm 
pulls in his tail, consequently pulling in the tails of all of the worms inside him. 
This is continued until the innermost worm, although very cramped, pulls in 
his tail so as to give us h. 

satisfies the theorem. 

Lemma 2.5.5. Let T k  E (Ti} have chambers C ,  , ..., C ,  (that is, 
C ,  = R2k). Then, there is an isotopy of En+, starting with the identity and 
ending with a unformly continuous homeomorphism v of E*+' onto itself 
such that 

(1) y = 1 outside Tk X El ,  and 
(2)  For w E El there is an integer i such that 

T(T,+,,+~ x w )  C (Ci u C,+l u Ci+, u Ci+J x [w - 2 m  + 3, w + 2 m  - 31. 
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PROOF. Figure 2.5.5 shows how to apply Lemma 2.5.4 to get 
Lemma 2.5.5. 

Figure 2.5.5 

A point x of Tk+m-3 x El represented in the regions Ri ( j  = 0, 1, - 1, 
2, -2, ...) is moved to the right so that its image is in (Ci u Ci+l) x El 
where Ci, Ci+l correspond to the columns containing the dotted 
rectangles in R j  on the same horizontal line with x. The  w coordinate of x 
is not changed by more than 2m - 3 in this adjustment. Similarly, 
points in the regions Sj ( j  = 0, 1, -1,2, -2, ...) are moved to the 
left. 

Factorization Theorem 2.5.3 (Andrews and Curtis). Let cy be an arc 
in En. Then, (Enla)  x El m En+l. 

PROOF. Let {Ti) be the sequence of neighborhoods of cy such that 
(Y = ni Ti previously constructed. We will show that this sequence 
satisfies Theorem 2.5.2. Thus, given Tk E {Ti }  and E > 0 we must find 
an integer N a n d  a homeomorphism rp such that rp changes w coordinates 
less than E, rp is the identity outside Tk x El ,  and, for each w ,  diameter 
rp(TN x w )  < E. By changing the w scale of the homeomorphism rp of 
Lemma 2.5.5 so that 2m - 3 < €12, we satisfy the condition on the 
change of w coordinate. Finally, by choosing N so that no four conse- 
cutive chambers of TN-l has diameter greater than €12, we see that rp is the 
desired homeomorphism. 
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EXERCISE 2.5.1. 

For the interested reader we will mention some results which are 
related to Theorem 2.5.3. Bryant [l] has shown that the arc (II of 
Theorem 2.5.3 can be replaced with certain cells. In [Bing, 21 it is shown 
that a set is a 3-cell if its product with Z is a 4-cell. Poenaru [l] and 
Mazur [l] have given examples of PL 4-manifolds different from I4 
whose products with Z are cells, and Curtis [l] and Glaser [l] have 
given similar examples for n 3 4. Kwun and Raymond [l] have shown 
that the product of In modulo an arc in its interior and Z2 is Zn+2. Finally, 
in [Harley, 11 it is shown that if (II is an arc in the boundary of In, then 
(In/.) x I is Zn+l. (In particular, Harley shows that the product of 
Example 2.4.8 with Z is a 5-cell.) Although we do not present an in-depth 
study of the decomposition theory of manifolds in this book, it is an 
important part of geometrical topology, Good references on the subject 
are [Armentrout, 11 and [Siebenmann, 21. 

Let 01 be an arc in Sn. Then, Y(Sn/a) m Sn+l. 

2.6. EVERYWHERE W I L D  CELLS A N D  SPHERES IN En>' 
OF ALL CODIMENSIONS 

This section consists of some of the results of [Rushing, I]. Wild 
cells of all possible codimensions in En,  n 3 ,  were first constructed 
in [Blankenship, I]. [Brown, 13 makes a nice application of Theorem 
2.53 to construct wild cells and spheres of all possible codimensions in 
En. Although Brown did not go into detail on his suggested method for 
producing wild codimension two spheres, such spheres had previously 
been given in [Cantrell and Edwards, I]. The work of Cantrell and 
Edwards was carried further in [Tindell, I]  to obtain some interesting 
wild embeddings in codimension two, Previous to the work of this sec- 
tion, everywhere wild arcs had been constructed in E3 in [Bing, I] and in 
[Alford, I] and everywhere wild arcs had been constructed in En, 
n 3 4 [Brown, I]. (For applications of this section see [Seebeck, 21, 
[Sher, 21 and [Cantrell, Price, and Rushing, 13.) Our main result is the 
following theorem. 

Theorem 2.6.1. Zn En, n 3 3, there are cellular, everywhere wild 
cells and everywhere wild spheres of all codimensions between 0 and n. 

Thus, it is immediate that there are also closed, everywhere wild 
strings and half-strings of all codimensions. 

An n-string (n-half-string) is a set which is homeomorphic to 
En (ET). A topological K-manifold M in En is locally tame at x E M if 
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there is a neighborhood U of x in En and a homeomorphism of U onto En 
which carries U n M onto a subpolyhedron of En. M is wild at x E M 
if it is not locally tame at x, and M is everywhere wild if it is wild at 
every point. 

Let A C X C Y be topological spaces. The  set Y - X is projectively 
1-connected at A if each neighborhood U of A contains a neighborhood 
V of A such that each loop in V - X is null homotopic in U - X .  
(Projective 1-connectivity of Y - X at X is the same as the cellularity 
criterion for X discussed in Section 4.8.) In  the case that A is a point, 
we say that Y - X is 1-LC at A. Let XC Y be topological spaces. 
Then, Y - X is said to be 1-SS (1-short shrink) at x E X if for every 
neighborhood Uof x there is a neighborhood V C  U of x such that every 
loop in V - X which is null homotopic in Y - X is also null homotopic 
in U - X .  

The following lemma originated in [Cantrell, Price, and Rushing, 11. 

Lemma 2.6.1. (a) Let C Sn (En)  be an ( n  - 2)-sphere which is 
locally $at at a point x. Then, Sn - Zn-2 (En  - Znp2) is 1 -SS at  x. 

(b) Let Xn-2 C En be a closed (n - 2)-string which is locally frat at 
a point x. Then, En - Xn-2 is 1-SS at x. 

PROOF. We will establish only the case Zn-2 C S" is an ( n  - 2)- 
sphere which is locally flat at x, because the proofs of the other cases are 
similar. Let U be any neighborhood of x and let V C  U be a flattening 
cell neighborhood for Zn-2 at x, that is (V ,  V n Zn-2) rn (In, In-2). Let 1 
be a loop in V - Z which is null homotopic in Sn - Z. By pushing 
radially away from x, we see that 1 is homotopic in V - Z to a loop 
1' in Bd V - Z which is null homotopic in Sn - (Int V n Z). The  
proof will be complete if we can show that 1' is null homotopic in 
Bd V - 2. Since we know that 1' is null homotopic in Sn - (Int V U Z), 
it will suffice to show that the injection 

r,(Bd V - Z) + rl(Sn - (Int V U Z)) 

is a monomorphism. In  order to do this consider the following Mayer- 
Vietoris sequence [Spanier, 1, pp. 186-1901: 

..- + H2(Sn - (Z - Int V ) )  --f H,(Bd V - Z) 

+ H , ( P  - (Int V u Z)) @ HI( V - (Bd V n Z)) 

+ H , ( P  - (Z - Int V ) )  --f a * . .  

Using Alexander duality [Spanier, I ,  p. 2961 on this sequence yields 

* . ~ + O + Z - + Z @ O - + O - +  .*.. 
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Hence, the inclusion of Bd V - Z into Sn - (Int V u Z) induces an 
isomorphism on first homology. But now any loop 1 in Bd V - C 
which is null homotopic in Sn - (Int V u 2) is also null homologous 
in Sn - (Int V u Z), consequently null homologous in Bd V - Z. 
Since .n,(Bd V - Z) is Abelian, it follows [Hu, 1, pp. 44-47] that 1 is 
null homotopic in Bd V - C and so the injection 

r,(Bd V - Z) + rl(Sn - (Int V u Z)) 

is a monomorphism as desired. 

Lemma 2.6.2. Let A C X C Y be topological spaces such that Y - X 
is not I-SS at any point of A. Suppose W C 2 C El, where W is open in 
El, and suppose R C Y x (El - W).  Then, ( Y  x El) - ((X x 2) u R) 
is  not I-SS at any point of A x W. 

Suppose that ( Y  x El) - ( ( X  x 2) U R)  is 1-SS at some 
pointp = (a ,  t )  of A x W. Let U be any neighborhood of a in Y. Then, 
U x W is a neighborhood of p in Y x El. Therefore, there is a neigh- 
borhood V ,  C U x W o f p  such that every loop in V ,  - ((X x 2) u R )  
which is null homotopic in ( Y  x El) - ((X x 2) u R)  is null homo- 
topic in ( U  x W )  - ((X x 2) u R). Choose a neighborhood V of a 
in Y and an E > 0 such that 

PROOF. 

p = (a, t )  E v x ( t  - E, t + .) c v,. 
By our construction, it is easy to see that every loop in V - X which is 
null homotopic in Y - X is also null homotopic in U - X and so it 
follows that Y - X is 1-SS at Q which is a contradiction. 

Although a manifold M C En of codimension two may be locally tame 
at a point x E M and yet fail to be locally flat at x, the following lemma is 
easily established. 

Lemma 2.6.3. If a manifold M C En fails to be locally frat at every 
point, then M is everywhere wild. 

Example 2.6.1. For n 3 3, there is an (n  - 2)-cell Fn-2 C En which 
lies on the boundary of an (n  - 1)-cell Dn-l such that Dn-l - Fn-2 is 
locally j u t  and such that En - Bd Dn-l fails to be 1-SS at every point of 
Int Fn-2. (Hence, by Lemma 2.6.1, Fn-2 fails to be local4 j u t  at  every point 
and so is  everywhere wild by Lemma 2.6.3.) Furthermore, Fn-2 is cellular 
in En. 

Following Example 2.4.13, we indicated a construction of Alford 
(given more completely in [Alford, I]) of a wild 2-sphere S in E3 whose 
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set of wild points is an arc F1. Let D2 be a 2-cell in S which has F1 on 
its boundary. Then, D2 - F1 is locally flat. It follows from the 
construction of S that E3 - S is not 1-SS at any point of In tF l .  In  
particular, there is a neighborhood U of each x E Int F1 such that for 
any neighborhood V C U of x there is a loop in V - S which is null 
homotopic in E3 - S, but not in U - S. For a fixed x E Int F1, let 
B C U be a flattening open disk neighborhood of Bd D2 in S at x, that is, 
(B ,  B n Bd D2) M (E2,  El).  Now let U‘ C U be a neighborhood of x 
in E3 such that U‘ n S C B and suppose that E3 - Bd D2 is 1-SS at x. 
Then, there is a neighborhood V C U‘ such that each loop in V - Bd 0 2  

which is null homotopic in E3 - Bd D2 is also null homotopic in 
U‘ - Bd D2. Let I :  Bd I2  -+ V - S be a loop which is null homotopic 
in E3 - S, but not in U - S. By the above assumption, there is an 
extension f: I 2  + U‘ - Bd D2 of 1. Clearly, there are two closed disks 
D+ and D- in B - Bd D2 such that f ( I 2 )  n S C D,  u D- . Let G 
denote the complementary domain of S in E3 which contains I(Bd P). 
Let X denote the component off -l(G) which contains Bd I 2  and consider 
the components of P - X .  Let A+ be the union of all of those compo- 
nents having frontiers whose images are contained in D+ and let A- be 
the union of all of those components having frontiers whose images are 
contained in D- . [By unicoherence (see Theorem 5.19 on p. 60 of 
[Wilder, 21) those frontiers are connected and so their images arecontained 
in either D, or D- .] Then, by Tietze’s extension theorem f I A+ n f -l(S) 
can be extended to a map f+: A+ -+ D, and f I A- n f -l(S) can be 
extended to a map f-: A- -+ D- . Redefine f to be f, on A+ and f- on 
A _ .  By using a collar of D, and D- in Cl(G n u )  (which exist since 
D+ and D- are locally flat), we can “pull in” f to obtain f*: I 2  -+ U - S 
and so I would be null homotopic in U - S which is a contradiction. 
Hence, E3 - Bd D2 is not I-SS at x. Consequently, F1 is not locally flat 
at x by Lemma 2.6.1 and so F1 is everywhere wild by Lemma 2.6.3. 
(In [Gillman, 11, it is shown that F1 does not pierce any disk which 
also shows it everywhere wild. (It is easy to see that F1 satisfies the 
cellularity criterion of [McMillan, I] (which we shall discuss in Chapter 4) 
and is thus cellular. (Gillman [ 1,3] observed that F1 is cellular and Alford 
[2] did the same.) 

Inductively, assume that there is an (n - 2)-cell Fnp2 C En which lies 
on the boundary of an (n - 1)-cell Dn-l such that Dn-l - FnP2 is locally 
flat and such that En - Bd Dn-l fails to be 1-SS at every point of Int  
Fn-2. Let Fn-1 = Fn-2 x [-I, 11, and Dn = Dn-l x [-1, 13. Then, 
Fn-1 C Bd Dn C Enf l  = En x El.  Since Dn-l - Fn-2 is locally flat in 
En, it follows that Dn - Fn-l is locally flat in En+l. Since 

Bd D” = (Bd Dn-l x [-I, I]) u (Dn-’ x {-I, I}), 
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Lemma 2.6.2 implies that En+l - Bd Dn is not 1-SS at any point of 
Int P - l .  It is a consequence of the next lemma that Fn-l is cellular in 
E"+1. 

Lemma 2.6.4. If X x El M En+l and A C X is cellular in En+l, 
then A x [- I ,  13 is  also cellular in En+l. 

EXERCISE 2.6.1. Prove Lemma 2.6.4. 

Example 2.6.2. For n 3 3,  there is a closed ( n  - 2)-string XnP2  in 
En such that En - Xn-2 fails to be 1-SS at every point of Xn-2. (Hence, 
by Lemma 2.6.1 and Lemma 2.6.3, Xn-2 is everywhere wild.) Furthermore, 
Xn-2 is the boundary of a closed ( n  - 1)-half-string Yn-l such that 
Yn-l - Xn-2 is locallypat in En. 

Do Alford's construction a countable number of times on E2 C E3 
so as to make each interval [n, n + 13, n an integer, the wild arc. (In 
carrying out the construction on [n, n + 13, run the hooks from n 
toward n + 1.) The  resulting 1-string X 1  obviously lies on a closed 
2-string W 2  such that E3 - W2 fails to be 1-SS at every point of X 1 .  By 
an argument similar to that following Example 2.6.1, we see that E3 - X1 
fails to be 1-SS at every point of X1. It is clear that X 1  bounds a closed 
2-half-string Y 2  such that Y 2  - X1 is locally flat in E3. The fact that 
Xn-I = Xn-2 x El and Yn = Yn-l x El satisfy Example 2.6.2 in 
dimension n + 1, follows from Lemma 2.6.2. 

Example 2.6.3. For n 2 3, there is an everywhere wild ( n  - 2)- 
sphere Zn-2 in En. Furthermore, lies on the boundary of an (n- 1)-cell 
Dn-' such that Dn-l - Zn-2 is locally flat in En. 

T o  get Example 2.6.3, simply one-point compactify the triple 
(Xn-2,  Yn-l, En) of Example 2,6,2 to obtain (LF2, Dn--l, Sn) and then 
remove a point not on Dn-l. 

Example 2.6.4. For n 3 3, there is an arc an in En such that En - a, 
is not projectively 1 -connected at a, . 

The following construction is based on some work of [Brown, I]. 
If a3 is the arc of Example 2.4.1 then S3 - a3 is neither I-connected 
nor projectively 1-connected at a3 . Suppose that an C Sn is an arc 
such that S n  - a, is neither 1-connected nor projectively 1-connected 
at an, and let = 9'(an) C 9'(Sn/an). (9' denotes suspension.) I t  
follows from Exercise 2.5.1 that 9'(Sn/an) w Sn-l. Also, since Sn - an 
is not 1-connected, Y(Sn /an)  - 9'(an)  is not I-connected. If Sn+l 
were projectively I-connected at an+l, there would be a neighborhood 



2.6. Everywhere Wild Cells and Spheres 89 

V of in Sn+l such that every loop in V - a n f l  could be shrunk to 
a point in Sn+l - . Thus, any loop in 9’(Sn/an)  - 9’(an) could be 
pushed up the product structure into V - and then be shrunk to 
a point, which would imply that 9’(Sn/an) - 9’(an) is 1-connected. 
Hence, Sn+l - . The arc 
an can be considered to be in En by removing a point of Sn not on an 
and so a,  satisfies Examples 2.6.4. 

is not projectively 1-connected at 

REMARK 2.6.1. For arcs related to those of Example 2.6.4, see Exercise 4.8.3. 

Lemma 2.6.5. Let A C X C Y be topological spaces such that Y - X 
is not 1 -LC at any point of A.  Let W C 2 C El where W is open in El. 
Then, ( Y  x El) - ( X  x 2) is not 1-LC at  any point of A x W. 

The proof of Lemma 2.6.5 is similar to that of Lemma 2.6.2 and so 
we omit it. 

Example 2.6.5. For n 4, there is a closed 1-string Xnl in En such 
that En - Xnl fails to be 1-LC at every point of Xnl. (Hence, Xnl fails 
to be locally p a t  at every point and is everywhere wild by Lemma 2.6.3.) 

Let an-l C En-l be the arc of Example 2.6.4. Then, (En-l/an-l) - 
fails to be 1-LC at . Let Xnl = a,-l x El C (En-’/anPl) x El. By 
Theorem 2.5.3, (En-l/an-J x El w En, and by Lemma 2.6.5, En-Xnl 
fails to be 1-LC at every point of Xnl .  

Example 2.6.6. For n 3 4, there is an arc f i n  in En such that En - Pn 
fails to be 1 -LC at every interior point of f i n  , (Hence, 18, is everywhere wild.) 
Furthermore, Pn is cellular. 

In  the notation of the preceding paragraph and by the same reasoning, 
x [-1, 11 C (En-l/a,-J x El m En, is the desired arc. I t  = 

is cellular by Lemma 2.6.4. 

Example 2.6.7. For integers n and k such that n >, 3 ,  0 < k < n, 
and n - k f 2, there is a k-cell D,,k in En such that En - Dnk fails to be 
1-LC at every interior point of D n k .  (Hence, Dnk is  everywhere wild.) 
Furthermore, Dnk is cellular. 

Gillman [2] modified Example 2.4.13 slightly to obtain an everywhere 
wild 2-sphere with certain surprising properties. Let DS2 be any 2-cell 
on that wild sphere. Then, E3 - D32 is not 1-LC at any interior point 
of D32, however it is easy to see that D,2 satisfies the cellularity criterion 
of [McMillan, 11 (which we shall discuss in Chapter 4) and so is cellular 
in E3. We will now assume that Example 2.6.7 holds in dimension n 
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and show that it holds in dimension n + 1. T h e  existence of Dk+l 
follows from Example 2.6.6. Let k + 1 be such that 1 < k + 1 -=c n + I 
and ( n  + 1) - (k + 1) # 2. By assumption there is a k-cell Dnk C En 
which satisfies Example 2.6.7. Let 

D::: = Dnk x [-1, 11 C En x El = En+', 

I t  follows from Lemma 2.6.5 that E n f l  - D::: fails to be 1-LC at 
every interior point of D:$ and it follows from Lemma 2.6.4 that Di'+: 
is cellular. 

Example 2.6.8. For integers n and k such that n 3 3, 0 < k < n, 
and n - k # 2, there is  a closed k-string Xnk in En such that En - X n 

fails to be 1-LC at every point of Xnk. (Hence, Xnk is everywhere wild.) 

One can obtain X32 by one-point compactifying E3 and then removing 
a point of the 2-sphere constructed in Example 2.4.13. T h e  existence 
of X,,, follows from Example 2.6.5. By the same reasoning of the 
preceding paragraph the existence of appropriate X::: follows by 
letting 

X::: = X n k  x E I C E n  x El = En+' 

and applying Lemma 2.6.5. 

Example 2.6.9. For integers n and k such that n 2 3, 0 < k < n, 

To get S n k ,  one-point compactify the pair (Xnk, En) of Example 2,6.8 

and n - k # 2, there is an everywhere wild k-sphere Snk in En. 

and remove a point not on the resulting k-sphere. 

Let Dk C Sn be a k-cell. Show that EXERCISE 2.6.2. 

(u)  

(b)  

If Dk - Sn is not simply connected, then Y(Sn)  - Y ( D k )  is not simply 
connected. (Hence, Y ( D k )  is not cellular in Y(Sn) m Sn+l.) 

I f  n - k # 2 (n  - k = 2) and Sn - Dk is not 1-LC (I-SS) at any point 
of Dk, then Y(Sn) - Y ( D k )  is not 1-LC (1-SS) at any point of Int Y ( D k ) .  
(Hence, Y ( D k )  is everywhere wild in Y(Sn) w Sn+l.) 

Give examples of a 2-cell in S3 and arcs in En, n 4, which are appropriate 
to plug in this exercise. 

EXERCISE 2.6.3 (Bierman). An arc a in Sn pierces an (n - 1)-sphere 
2P-1 at a point p if for some subarc ,6 of a, /3 n Zn-l = p and the endpoints of 
/3 are in different components of Sn - Cn-l. Show that for n 2 3, there is an 
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everywhere wild arc in Sn which can pierce a locally flat (n  - 1)-sphere at one 
and only one point. (You may use the following fact which we will establish in 
Chapter 3: If Zn-I C En, n 2 4, is an (n - 1)-sphere which is locally flat except 
possibly at a single point, then 2F-l is locally flat.) 

EXERCICE 2.6.4 (Daverman). Let X denote a Cantor set in Bk, where X 
is contained in allk in case k = n,  and f an embedding of X onto a Cantor set 
in a connected n-manifold M n ( k  < n).  Show that there exists an embedding F 
of Bk in Mn such that F 1 X = f and F(Bk) is locally flat modulo F ( X ) .  Observe 
that this exercise can be used to construct wild cells. 

REMARK 2.6.2. Exercise 2.6.4 is proved in [Daverman, 21. By ingeniously 
defining the Cantor sets X and F ( X ) ,  Daverman exhibits certain wild cells 
containing a scarcity of tame disks. Construction of wild disks in E n  which lie 
on no 2-sphere are given in [Lacher, 61. 

2.7. SOME WILD POLYHEDRA IN LOW CODIMENSIONS 

I n  this section we show that under special dimension restrictions the 
union of two cells may be “badly” embedded in the n-sphere even though 
each of the cells is “nicely” embedded. T h e  problem of determining 
whether the union of cells is nicely embedded in the n-sphere if each 
of the cells is nicely embedded is related to many topological embedding 
problems. For instance, the n-dimensional annulus conjecture (now 
known to be true for n # 4) is a special case. Cantrell and Lacher [2] 
have shown that an affirmative answer implies local flatness of certain 
submanifolds. Also, this problem is related to the conjecture that an 
embedding of a complex into the n-sphere which is locally flat on open 
simplexes is e t a m e  in codimension three. T h e  problem was first 
investigated by Doyle [2, 31 in the three-dimensional case and by 
Cantrell [7] in high dimensions and later by Lacher [2J, Cantrell and 
Lacher [ I ,  21, Kirby [2], Cernavskii [4, 51 and Rushing [ 5 ] .  Also, 
Sher [I]  has generalized a construction of Debrunner and Fox [ I ]  to 
obtain refined counterexamples in certain cases (see Exercise 2.7.6). 
As mentioned above, in this section we will concentrate on giving certain 
“easy” counterexamples. We will obtain positive results on this problem 
later. (For further discussion, see Sections 3.9 and 5.2.) 

Let D, and D, be cells in En such that D, n D, = Bd D, n Bd D, 
is a cell. We say that D, u D, is a flat pair if there is a homeomorphism 
h of E” such that h(Di) is a simplex and h(D, n D,) is a face of h(Di), 
i = 1,2. 
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Let P(n, m,  , m, , k) stand for the following statement: If D, and D, 
are locally flat cells in En of dimensions m, and m, , respectively, and if 
D, n D, = Bd D, n Bd D, = D is a k-cell which is locally flat in 
Bd D, , in Bd D, and in En, then D, u D, is a flat pair. 

The  following is the main result of this section. 

Theorem 2.7.1. P(n, m, , m2 , k) is false for  k = n - 3 and n 3 3. 

Lemma 2.7.1. Let D, and D, be cells in En, n >, 3, such that D, u D, 
is  a f lat  pair and D, n D, = Bd D, n Bd D, = D is an (n  - 3)-cell. 
Let q E Int D and let (Vi)E1 be a sequence of closed neighborhoods of q in 
En such that 

(a) 
(b) 
(c) 

V ,  3 V ,  3 . * a ,  

of, V,  = q, and 
Vi - (Dl u D,) is arcwise connected. 

Then, there exist indices N and m > N such that for k 3 m the image 
group under the injection ikN: n,( V ,  - (Dl u D,)) + nl( VN - (Dl u D,)) 
is  infinite cyclic. 

EXERCISE 2.7.1. Prove Lemma 2.7.1. (Hint: This proof is quite similar to 
the proof of Proposition 2.3.1.) 

Lemma 2.7.2. Let 01 C En be an arc for which there is  a straight line 
L C En such that no line parallel to L intersects OL in more than one point. 
Then, 01 is flat. 

PROOF. We may suppose thatL is parallel to the line {(O, ..., 0, t):  t E E l } ,  
for if not we can rotate En so that this is the case. Since no line parallel to 
L intersects 01 in more than one point, the projection n: 01 -+ En-1, 
defined by r(xl , ..., xn) = (x, , ..., xn-, , 0)  where ( x ,  , ..., xn) E a 
is a homeomorphism. We now define a map h:  n ( a )  + El by 
h(x , ,  ..., xTL-,) = x ,  where n ( x l ,  ..., xnP1, xn) = ( x l ,  ..., xn-,, 0). Cer- 
tainly h(x(cu)) is compact and hence is contained in a closed interval 
[a, b].  By applying Tietze’s extension theorem, we get a map f: En-l ---t E1 
such that f I n(01) = h. 

Define a homeomorphism $,: En + En by 
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Consider $7': En -+ En. First, +;'(a) = n(01) C En-l since for 
( x l  , ..., x,) E 01 we have 

But by Theorem 2.5.1, n ( a )  is flat. Hence, 01 is flat. 

Example 2.7.1 (Fox and Artin). p(3, 1, 1, 0) is  false, that is, there 
is a wild arc H Q  in E3 which is the union of two $at arcs H# and Hb sharing 
a common end-point. Furthermore, the counterexample fails to satisfy 
Lemma 2.7.1 

In  the construction of this example we will use the notation developed 
following Lemma 2.4.2. Denote by K# and Kb the two arcs situated in 
Z3 which joint t- to t ,  and r- to Y+ , respectively, as shown in Fig. 2.7.1. 
The two arcs H# = (J,"=' f , (K#)  u q and Hb = (Jzz1 f n (Kb)  U q intersect 
in their common end-point q. Their union is the arc H Q  = H #  u Hb. 
These three arcs have the regular projection into the yx-plane pictured 
in Fig. 2.7.2. 

Figure 2.7.1 

The fact that both H #  and Hb are flat follows directly from 
Lemma 2.7.2. We will show that Hh is wild by showing that it does not 
satisfy Lemma 2.7.1. Let {Vi} be the sequence of closed 3-cell neighbor- 
hoods of q indicated in Fig. 2.7.2. This sequence clearly satisfies the 
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hypothesis of Lemma 2.7.1. By the same technique used in Example 
2,4,1, we see that T,( V ,  - He) has the following presentation: 

a .  a = c .  e > a.  t+1 a.a:lb:' z e + 1  a 9 b a .  i a + l  b:' t ci -' 9 bi C .  r1 C. ;:l c.1 
i=m i>m 

i odd 

u {ai = ci , a;',a;'ai+,bi, b;la;',bjci , b;l~i~i+l~;l}  11 
i even 

i>m 
i odd 

m 

{bi = u ~ + ~ u ~ u &  , bi~,+lb;l~;l, bd = a;la,,,~,]) 
i=m 

i even 

1 m m u {ail: u {aiaitlai = ai+laiai+l} . I i=m i=m 

We see from the last relation that if there exist indices N a n d  m > N 
such that the injection imN: n,( V,  - He) --f T,( VN - He) is Abelian 
then am = a,,,, = in T,(V, - He). This is not possible since we 
can define a homeomorphism h of rl( V, - He) into the permutation 
group on three letters by h(a,) = (12) if i is odd and h(a,) = (13) if i 
is even. I t  follows that h induces the desired homeomorphism since it is 
easy to check that for any i, 

h(ai+J h(ai) h(ai+l> = h(ai) h(ai+l) Nail (23). 

Hence there is no N and m > N such that the injection 

imN: r,( v,, - w - 4 V N  - w 
is Abelian and so He is wild by Lemma 2.7.1. 

Example 2.7.2. P(3,2, 1, O), P(3, 2, 2, 01, P(3, 3, 1,0), P(3, 3, 290) 
and P(3, 3, 3,O) are all false, Furthermore, the counterexamples fail to 
satisfy Lemma 2.7.1. 
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Example 2.7.2 clearly follows from Example 2.7.1 by fattening u p  
the arcs H+ and H b  into 2-cells and 3-cells as appropriate. 

Lemma 2.7.3. Suppose that D, and D,  are cells in En such that 
D, n D, = Bd D, n Bd D, = D is an ( n  - 3)-cell and suppose that 
D, v D, fails to satisfy the conclusion of Lemma 2.7.1. Then, D,* = D, x I 
nd D,* = D,  x I are cells in En+l such that 

D,* n D,* = Bd D,* n Bd D,* = D* 

is an ( n  - 2)-cell and D,* u D,* fails to satisfy the conclusion of 
Lemma 2.7.1. 

EXERCISE 2.7.2. Prove Lemma 2.7.3. (Hint: This proof is similar to the 
proof of Lemma 2.6.2.) 

Proof of Theorem 2.7.1. Theorem 2.7.1 follows immediately from 
Example 2.7.1, Example 2.7.2, and Lemma 2.7.3. 

An arc is said to be mildly wild if it is wild and can be 
expressed as the union of two tame arcs. Thus, the arc of Example 2.7.1 is 
mildly wild. Show that the arc pictured in Fig. 2.7.3 is mildly wild. Apparently 
wilder,  1, p. 634, footnote I] was the first to consider such an arc. Such arcs 
are also studied in [Fox and Harrold, 13. 

EXERCISE 2.7.3. 

Figure 2.7.3 

EXERCISE 2.7.4. An n-frame F ,  is a union of n arcs, F,  = ub, Ai , with 
a distinguished point p such that, if n == 1, p is an end-point of A, , and if 
n > 1, p is an end-point of each A j  and Ai n A j  = p ,  i # j .  In EL let Bi be the 
arc in the x,x,-plane defined in polar coordinates by r < 1, 0 = ~ ( l  - l/i). 
For n a positive integer, the standard n-frame G, is defined by G, = Ua?, Bi . 
An n-frame F,  in Ek is said to be flat if there is a homeomorphism of EL onto 
itself which carries F, onto G, . Otherwise, F, is said to be wild. The exercise 
is to construct an n-frame in E3 for all n 2 2 such that every m-subframe, 
I < m < n, is wild. 

EXERCISE 2.7.5. An n-frame Fn = u:=, Ai C E k  is said to be mildly wild 
if it is wild and F,  - (Ai - p )  is flat for i = 1, 2, ..., n. Show that for n 3 1 
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there are mildly wild n-frames in E3. A general construction for n 2 is 
suggested by Fig. 2.7.4. It is clear that each proper subframe is flat from 

Figure 2.7.4 

Fig. 2.7.5, that is, the process of moving a proper subframe onto a standard 
frame resembles the unraveling of a piece of knitted goods in which a “run” has 

Figure 2.7.5 
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appeared. T o  show the suggested frame wiId actually is a hard exercise. This is 
done in [Debrunner and Fox, 11 and their proof involves the construction of a 
complicated, but quite interesting, group. We also note that a mildly wild triod 
(3-frame) was attempted in [Doyle, 11, however the proof is incorrect because 
the presentation of the group G, is wrong. Doyle’s triod can in fact be shown to 
be flat. 

EXERCISE 2.7.6. Given 1 < m < n show how to generalize the construction 
of the last example to construct an n-frame in E3 such that every m-subframe is 
flat but every (m + 1)-subframe is wild. Such a construction is given in [Sher, 11. 

Use Exercises 2.7.3 through 2.7.6 and the techniques of EXERCISE 2.7.7. 
this section to obtain other wild embeddings in high dimensions. 



C H A P T E R  3 

Flattening, 
Unknotting, and Taming 
Special Embeddings 

3.1. INTRODUCTION 

Although some of the results covered in this chapter have been 
generalized, as will be apparent from the numerous references, many of 
the techniques of proof have become classical. (In Chapter 5 we will 
present some generalizations.) The  serious student of topological 
embeddings, in the author’s opinion, is well advised to begin his study 
of taming and unknotting theorems with these topics. One appeal of the 
included material for beginning students of the area is that none of the 
proofs use engulfing. (Engulfing is covered in the next chapter.) I t  is 
best to have some feeling for the theory of topological embeddings before 
attempting to master that valuable tool. 

T o  get the idea of “straightening out bad-looking things” we begin 
with the easily obtained result that an almost polyhedral arc is flat. 
Next, we carry the generalized Schoenflies Theorem a step further by 
establishing the fact that any (n - 1)-sphere in Sn, n 2 4, which is 
locally flat modulo a point is flat. (This is not true for n = 3 as is shown 
by Example 2.4.6.) This proof, which was developed by Cantrell and 
employs a technique of Mazur, uses the fact that an arc which is locally 
flat modulo an end-point is flat. It follows from the work three sections 
later that such an arc can be assumed to be polyhedral modulo the 
end-point and so by the first section it is flat. Next some theorems of 
Lacher which flatten half-strings and strings are presented, and the 
result of Cantrell just mentioned is used. An unknotting theorem for 
polyhedra follows which was first considered by Gugenheim and later 
98 
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refined by Bing and Kister. Our version of this theorem handles infinite 
polyhedra. We then employ this unknotting theorem to E(x)-tame 
infinite polyhedra in the trivial range. This is succeeded by a taming 
theorem of Bing and Kister for polyhedra which lie in hyperplanes. 
Our proof is not that of Bing and Kister, but an adaptation of some 
early work of Bryant which uses the preceding two sections. Next 
another result of Bryant is established which e(x)-tames embeddings 
that are locally tame modulo nice subsets. Finally, in the last section 
all of the results of the preceding sections of this chapter are used to 
prove a theorem of Kirby which generalizes Cantrell's theorem very 
nicely. More detailed discussions of these results as well as many 
related references will appear in the various sections. 

3.2. ALMOST POLYHEDRAL ARCS ARE FLAT 

Flattening Theorem 3.2.1. Let a C En, n 3 4, be an arc which is 
locally polyhedral modulo a countable set X C a, that is, ;f p E CL - X ,  
thenp has a closed neighborhood in a which is a polygonal arc. Then, a is $at 
in En. 

PROOF. Put a in a countable number of lines {Li}& by extending 
all of the one-simplexes of a and running a line through each point of X. 
Consider the countable collection (Li ,L,), i # j ,  of pairs of these lines. 
Each such pair determines a hyperplane Hii of dimension at most three. 
Translate each hyperplane Hii to a hyperplane H &  which passes through 
the origin. Since each of the H:j is nowhere dense in En, by the Baire 
category theorem there is a point p of En not in any of the H:j. 

Let I be the line which passes through p and the origin. Certainly 
1 hits each Hji only in the origin, because if it hit some Hii somewhere 
else then it would be contained in that H:* which contradicts the fact 
that p E 1 is not in H:i . Also, it is easy to see that any line I' parallel 
to I hits each Hli in at most one point since a translation of En which 
takes a point x E I' n H &  to the origin also takes I' onto 1 and H:i onto 
itself. Similarly, any line 1' parallel to 1 can hit each H i j  in at  most 
one point. It now follows easily that each line 1' parallel to I can hit 
(JTG1 L,  in at most one point. Hence no line parallel to 1 can intersect a 
in more than one point and so a is flat by Lemma 2.7.2. 

Some early results related to the theorem of this section were obtained 
in [Cantre11 and Edwards, 21. Related higher-dimensional results are 
contained in [Seebeck, 13 and [Cantrell and Rushing, 1, Theorem 21. 
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3.3. A N  (n - 1)-SPHERE IN 9”’‘ WHICH 

I S  LOCALLY FLAT MODULO A POINT I S  FLAT 

Mazur [2] developed an elegant technique in the process of proving 
the generalized Schoenflies theorem with a “niceness” condition added 
to the hypothesis. (It follows from a short argument in [Morse, 11 that 
this “niceness” condition can be removed.) Mazur’s technique has 
many applications, some of which may be found in [Stallings, I]. 
(For instance, Stallings showed that an invertible cobordism (defined in 
Section 4.13) minus one end is the product of the other end with a 
half-open interval. For related work see Section 4.13.) Since Brown’s 
proof of the generalized Schoenflies theorem (Theorem 1.8.2) is included 
in this book, we will not give the Mazur-Morse proof. However, Mazur’s 
technique will be fully developed in this section in the presentation of an 
application due to Cantrell. Cantrell’s result, the statement of which 
follows, was announced in [l] and his proof can be obtained by com- 
bining [2] and [3]. 

Flattening Theorem 3.3.1 (Cantrell). If C is an ( n  - 1)-sphere in 
Sn (n 3 4), p E Z, and C is locally $at a t  each point of Z - p ,  then Z 
is $at in Sn. 

In  this section we will actually establish the following stronger result. 

Theorem 3.3.2 (Cantrell). If Z is an ( n  - 1)-sphere in S”, n 3 4, 
p E Z ,  G a complementary domain of Z, and C - p is locally collared 
in C1 G, then C1 G is an n-cell. 

Stallings, in proving that locally flat spheres in Sn of codimension 
at least three are flat, got the analog of Theorem 3.3.1 in codimensions at 
least three for free. (We will give Stalling’s proof in Section 4.5.) For 
some time after the appearance of Cantrell’s result, it was wondered 
whether a codimension one sphere which is locally flat modulo two 
points is flat. In connection with this, it was shown in [Cantrell and 
Edwards, 1, Theorem 3.5) that if no embedding of the closed manifold 
M into the interior of the manifold N fails to be locally flat at precisely 
one or two points, then every embedding which is locally flat modulo 
a countable number of points is locally flat. The codimension one 
problem was solved by Kirby [l],Cernavskii [I], [4], and Hutchinson [l]. 
In  particular, it follows from [Kirby, I]  that an embedding of an 
unbounded ( n  - 1)-manifold into an unbounded n-manifold, n 2 4, 
which is locally flat modulo a countable set of points, is locally flat. 
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We will prove this in Section 3.9 (see Corollary 3.9.1). Some of 
Cernavskii's work on this problem will be presented in Chapter 5 (see 
Theorem 5.2.2 and Remark 5.2.3). 

The rest of this section will be devoted to establishing the results of 
Cantrell mentioned above and will be based on [Cantrell, 1-51. 

For t > 0, let B,  be the n-ball in En with center at the origin and 
radius t. For t > -1, let 

C, = {(x, , x 2 ,  ..., x n )  E En I ~ 1 2  + ~ 2 2  + + x",, + ( x n  + t)' < (1 + t)'}. 

Lemma 3.3.1. Let Z be an ( n  - 1)-sphere in Sn, let p be a point of Z, 
and let G and H be the components of Sn - Z. Suppose that Z - p is 
locally flat in Sn, that Z is locally collared in C1 H at p and that h is a 
homeomorphism from Bd B, onto Z such that h((0, 0, ..., 0, 1)) = p .  Then, 
h can be extended to a homeomorphism g from Cl(C, - B1I4) into S". 

Lemma 3.3.1 follows easily from Theorem 1.7.4 and Theorem 1.7.6. 

Flattening Theorem 3.3.3. Let 2 be an (n  - 1)-sphere in S", n 4, 
let p be a point of Z, and let G and H be the components of S" - Z. 
If Z - p is locally flat in Sn and if Z is locally collared in C1 H at p ,  
then Z is flat. 

C1 H is an n-cell by Theorem 1.8.3, hence by Exercise 1.8.4 
we need only show that C1 G is an n-cell. Let g be the homeomorphism 
from Cl(C, - B1I4) into S" given by Lemma 3.3.1. Also, let A be the 
line segment in En from (0, 0, ..., 0, 8) to (0, 0, ..., 0, 1) and let K be the 
component o f  S" - g(Bd Bl12) that contains G (see Fig. 3.3.1). Note 
that C1 K is an n-cell. Let + be a continuous map of Cl(C, - B,12) onto 

PROOF. 

Figure 3.3.1 
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Cl(C, - B,) such that (1) + is fixed on Bd C,, (2) +(Bd Bllz) = Bd B,,  
and A is the only inverse set under +. The  mapping f of C1 K onto 
C1 G defined by 

x $g(Cl(G - Bl/Jh 

is a continuous map of C1 K onto C1 G and g(A) is the only inverse set. 
We will next construct a map k of C1 K onto C1 K such that g(A) 

is the only inverse set. Then, kf- l  will be a homeomorphism from 
C1 G onto the n-cell C1 K. It follows from a result proved later in 
this chapter (Corollary 3.6.1) that g(A) may be assumed to be locally 
polyhedral modulo p .  (In [Rushing, 10, Remark 51, it is shown how to 
avoid using the corollary to Theorem 3.6.1, by applying a technique of 
Cernavskii instead.) Thus, it follows from Theorem 3.2.1 that g(A) is 
flat. Using this fact it is easy to construct an embedding j: B,  --t C1 K 
such that j (A )  =g(A). Let # be a map of B,  onto itself such that 
# I Bd 23, = 1 and A is the only inverse set, and let k be given by 

EXERCISE 3.3.1. If D is an n-cell in En, n 3 4, p E Bd D, and D - p is 
locally flat, then D is flat. 

EXERCISE 3.3.2. If M is an n-manifold in the interior of an n-manifold N ,  
n 3 4, and E is the set of points at which M fails to be locally flat, then E is 
perfect or E = (3. 

EXERCISE 3.3.3. If Dn is an n-cell in En and Dk C Bd Dn is a k-cell, 0 < k < n, 
such that Dn - Dk is locally flat in En and Dk is locally flat in Bd Dn, 
then Dn is flat if h ( D k X I )  is locally flat in En for some collaring of Bd Dn 
in Dn. (For a more general result see Theorem 3.1 of [Cantrell and 
Lacher, 21.) 

Proof of Theorem 3.3.2. Let h be a homeomorphism from Bd B, 
onto .Z such that h((O,O, ..., 0, 1)) = p  and let G and H denote the 
complementary domains of Z in Sn. Then, by Theorem 1.7.6, h can be 
extended to an embedding g from C1( C, - B,) into Cl G. Let G, and G, , 
respectively, be the components of Sn - g(Bd CllZ) and Sn - g(Bd C,) 
that are contained in G (see Fig. 3.3.2). We now observe that C1 G, 
is homeomorphic to C1 G. For, if h,  is a homeomorphism of En onto 
itself which is fixed on Bd C,  and carries Bd Cl/z onto Bd B, , then 
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-G 
t 

I H 

Figure 3.3.2 

the mapping f defined by 

x ,  x € G 2  
f ( x )  = [gh,g-l(x),  x E C1 G, - G, 

carries C1 G, homeomorphically onto C1 G. This gives the following 
fact: if one attaches a copy of C1 G, to CI(C,/, - B,) along Bd Cllz 
with g-l ,  the space thus obtained is homeomorphic to C1 G,. (It is 
simply C1 G.) This will be used to show that C1 G, is an n-cell and 
hence that C1 G is an n-cell. 

Let S be a flat (n - 1)-sphere in Cl(C,/, - B,) such that 

S n (Bd C,,, u Bd B,) = (0, 0, ..., 0, 1) .  

If K is the component of S n  - g(S) which contains G, , then by 
Theorem 3.3.3, C1 K is an n-cell. Let Int S denote the complementary 
domain of S which does not intersect g-'(Z) = Bd B, and notice that 
C1 K can be realized by taking P = Cl(C,/, - B,) - Int S and 
attaching C1 H to P along Bd B, by g-l I Z and attaching C1 G, to P 
along Bd CllZ with g-' I Bd(G,). 

The set P is a closed n-cell (the closure of the exterior of S) with 
the interiors of two n-cells, sharing a common boundary point with 
Bd S ,  removed. The cell obtained from P by attaching C1 G, and C1 H 
to the interior boundary spheres of P with g-l will be denoted by P 
(see Fig. 3,3.3). 

Let F be the part of the solid unit ball in En centered at (0, 0, ..., 1, 0), 
determined by xn 2 0. Let {qi}Eo be a sequence of points in the 
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Figure 3.3.3 Figure 3.3.4 

intersection of the plane x1 = x2 = = x,-~ = 0 and Bd F such that 
if qi = (0, 0, ..., , a,,), then a(,-,), = 2, a,, = 0, the u ( , - ~ ) ~  
converge monotonically to 0, and a,, > 0 if i > 0. We then section 
F into a countable number of n-cells by projecting the (n - 2)-plane 
x, = x,-~ = 0 onto each of the qi. The section determined by qi-, 
and qi is denoted by Di , We then delete from Di the interior of a cell D,', 
similar in shape to D, and except for the boundary point (0, 0, ..., 0), 
contained in the interior of D, . Any two adjacent sections then form 
a copy of P, and are labeled P$ , Pi as in Fig. 3.3.4. Notice that Pa and Pa' 
have wZi = Bd Dii in common, and Pi', Pi+l have wZa+, = Bd Dii+, 
in common. 

Let 4, be a homeomorphism of Pi onto Pi' which leaves w2, fixed 
and carries w2+, onto w2i+1 . (Of course, here we need n 3.) Let $i be a 
homeomorphism of P4' onto P$+l which leaves wZifl fixed and carries 
w2, onto w2i+2.  We identify (P, , w, , w2)  with (P, Bd C112, Bd B,). 
The sets C1 G, and C1 H are sewn to P, along w, and w 2 ,  respectively, 
with g-l. The resulting n-cell is denoted by P, . Then, C1 G, and C1 H 
are sewn into alternate holes bounded by wZi+, ,  w ~ , + ~  with attaching 
homeomorphisms 

4i . * *  #&g-': Bd Gi + wzi+i , 

#i * * a  #&g-l: Bd H + wZif2 . 
The sets thus obtained from Pi and Pi' are denoted by Pi and Pi' 
and we set F, = uT=l Pi . 

Since 4, is the identity on w2 , we can extend 4, to a homeomorphism 
of Pl onto P,' and conclude that Pl' is also an n-cell. I n  a similar manner 
we extend to a homeomorphism of Pi' onto Pi+l and extend r$i to a 
homeomorphism of Pi onto Pi'. I t  then follows that each Pi and each 
Pi' is an n-cell. 

We now observe that F, is an n-cell. We map the boundary of 
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D2i-1 u D2i onto the boundary of Pi with the identity homeomorphism. 
Since D2+, U D2i and Pi are n-cells, this homeomorphism between 
their boundaries can be extended to a homeomorphism between the 
cells. These extensions for i = 1, 2, ... yield a homeomorphism of F 
onto F, . 

We next observe that F, is a copy of Cl/z - B, with C1 G, sewn 
along one boundary sphere. This is established by showing that F l ,  
with G, removed from PI , is homeomorphic to F,  with Int  D,' removed. 
Let i be the identity mapping on D,  - Int  D,' and on Bd(Dzi u D2i+l), 
i = 1, 2, ... . Since D2i u D2i+l and Pi' are closed n-cells and i restricts 
to the identity on their boundaries, i can be extended over their interiors. 
These extensions over each of the DZi LJ D2i+1 yield the desired 
homeomorphism. 

We have seen that F, can first be viewed as a closed n-cell, and 
secondly as C1 G, sewn into a boundary sphere of Cl(C,/, - B,). 
We have previously observed that a space of the second type is equivalent 
to G,. Hence C1 G,, or equivalently C1 G, is an n-cell. 

EXERCISE 3.3.4. Use Theorem 3.3.1 to show that if X is a closed, locally 
flat (n - 1)-string in En, n 3 4, then there is a homeomorphism of En onto 
itself that takes X onto En-l. 

EXERCISE 3.3.5. (We suggest in this exercise an elegant alternate proof of 
Corollary 6 of [Doyle and Hocking, 21.) Let Z2 be a 2-sphere in E3 and suppose 
that p is a point of Z2 such that Z2 - p is IocaIly flat. Use the technique of this 
section to show that if there is a flat arc OL in Z2 through p ,  then Z2 is flat. 

REMARK 3.3.1. By employing Exercise 3.3.3 and the y(n, n - 1, n - 2) 
and P(n, n - 1, n - 2) statements, to be discussed later, one can prove an 
analog of Exercise 3.3.5 in high dimension where p is replaced by an (n - 3)- 
cell and a is replaced by an (n - 2)-celI. 

3.4. FLATTENING CELLS, HALF-STRINGS, A N D  STRINGS 

The  material of this section is based on results developed by Lacher 
in [I]. Similar results were independently developed by Cernavskii in 
Section 2 of [2]. We begin this section by showing that locally flat 
cells are flat, a result which has been in the folklore of topological 
embeddings for some time. 

Flattening Theorem 3.4.1. Let D be a locally flat k-cell in an n-mani- 
fold M .  Then, D has a neighborhood U in M such that ( U ,  D )  w (En, Ik) 
( M means is homeomorphic to). 
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PROOF. (We will prove the theorem for the case that D is an arc 
and leave the generalization of the argument to cells as an exercise.) 
Since D is locally flat, there are open sets Ul , U,  , ..., U, in M such 
that D is covered by the U, and such that (U ,  , Ui n D) is homeo- 
morphic either to (Em,  E i )  or to (En,  E l )  for each i. Let (Dl , ..., 0,) be a 
covering of D with subarcs satisfying the following properties: 

(1) 
(2) Ei = D, u 
(3) 

each D, is contained in some Uj , 

D, n Ei+, is an end-point of both Di and E,,, . 
u D, is an arc for each i, and 

Suppose that for i = I ,  2, ..., r - 1, we can construct a homeomorphism 
hi of M onto itself such that h,(Ei) = E,+, . Then, h = hr-l ..- h,hl 
would be a homeomorphism of M which maps D = El onto D, = E, . 
Thus, the proof would be complete since 0, has a neighborhood of 
the desired type. 

Let us now construct h, . I t  follows from the above three conditions 
that there is a U, and a homeomorphism cj1: Uj  --t) En such that 
$1( Uj n D) = E: and +,(D,) = I:. Let +, be a homeomorphism of 
En which is the identity outside some compact set and which takes 
E: onto CI(E: - I:). Define h, on M by 

h, = p d 1  on uj 3 

identity on M - U j l  

Clearly h, takes El onto E, . One may construct h, , ..., hr-l similarly. 

Generalize the above argument so that it will handle cells EXERCISE 3.4.1. 
of all dimensions. 

Corollary 3.4.1. Every locally j u t  embedding of Ik into En or Sn, 

PROOF. The corollary follows by applying Theorem 1.8.2 (the 

k \< n, i s j a t .  

generalized Schoenflies theorem). 

Lemma 3.4.1. Suppose that K is a compact subset of a locally j l a t  
k-half-string X in the n-manifold M ,  k < n.  Then, there is an open set U 
in M such that K C U and ( U ,  U n X )  w (En,  E r ) .  

EXERCISE 3.4.2. 
Next we will prove a simple-minded engulfing lemma (see Fig. 3.4.1). 

Lemma 3.4.2. Let X be a k-half-string in the n-manifold M ,  k < n. 
Let U ,  V be open sets in M such that (17, U n X )  M (Em,  E r )  w (V ,  V n X )  

Establish Lemma 3.4.1. (Hint: Use Theorem 3.4.1.) 
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Figure 3.4.1 

and ( U  n X )  C (V n X ) .  If C is a compact subset of U, then there is a 
homeomorphism g of M onto itself such that 

( I )  g I X = identity, 
(2 )  g 1 M - U = identity, and 
( 3 )  g( V )  contains C. 

PROOF. Let W = q5( U n V) ,  where 4 :  ( U ,  U n X )  - (En, E:) is a 
homeomorphism. Let f be a homeomorphism of En onto itself which 
is the identity on E: and outside some compact set and such that f ( W )  
contains t$(C). Then, define g on M by g = t$-yt$ on U and g = identity 
otherwise. 

Lemma 3.4.3. Let X be a locallyjat  k-half-string in the n-manijold M.  
Then, there exists a sequence V ,  , V,  , ... of open subsets of M such that 

(1) ( V , ,  V, n X )  M (En, E:)for each i, 
(2)  Vi C V,,, for  each i, and 
(3) X c (J;=l v, . 
PROOF. Let K,  , K,  , ... be a sequence of compact sets whose union 

is X, and let U ,  , U ,  , ... be a sequence of open subsets of M such that 
(U,  , U, n X )  M (En, E f ) ,  Ki C Ui , and ( U, n X )  C ( U,,, r\ X )  for 
each i. Let hi: ( U ,  , U, n X )  - (En, E:) be a particular homeomor- 
phism. The  existence of Ui and hi follows directly from Lemma 3.4.1. 
We shall apply Lemma 3.4.2 recursively on the Ui . 

Apply Lemma 3.4.2 with U = U, , V = U ,  , and C = 

C, = hT1(B,) u K,  , where B, is a (round) ball in En centered at the 
origin. Let g = g ,  be given by Lemma 3.4.2, 0, = g,(U,), and 
h, = h,g;' I 0,. Note that h, maps the pair (0, , 0, n X )  homeo- 
morphically onto (En, E f )  and 0, contains hT1(B,) u K,  , 

Apply Lemma 3.4.2 again with U = o,, V = U , ,  and 
C = C, = h;'(B,) u K,  , where B, is a ball in ETL centered at the origin 
so that h,(C,) CInt(B,). Let g = g ,  be given by Lemma 3.4.2, 
0, = g3( U,), and h, = h, g;'. Then, h3 maps ( O3 , 0, n X )  homeo- 
morphically onto (En, E f )  and 0, contains h;l(B,) u K,  . 

Step 1 .  

Step 2. 
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Continuing this process, we get a sequence 0, , 0, , ... of open sets 

(a) hi: (a,, Ui n X )  --H (En, E;) for all i, 
(b) h&(Int Bi+,) 3 hi'(Bi) for all i, and 
(c) h;i1(Bi+,) 3 Ki for all i. 
Define Vi = h;l(Int B,), i = 1 ,  2, ... . Since B, is an open (round) 

ball centered at the origin in En, condition I follows from (a). Conditions 
2 and 3 follow from (b) and (c), respectively, and the lemma is proved. 

The  following theorem is proved by "the technique of meshing a 
straight structure and a wiggly structure" developed by Brown [2] in 
the process of proving that the monotone union of open n-cells is an 
open n-cell. Later we will make other uses of this technique when 
considering work of Stallings (Theorem 4,5.3) and Cernavskii (Lemma 
5.2.3). 

in M and a sequence h, , h, , ... of homeomorphisms such that 

Flattening Theorem 3.4.2 (Lacher). Let X be a locally j u t  k-half- 
string in the n-manifold M ,  k < n. Then, there is an open set U in M 
containing X such that ( U ,  X) % (En ,  E;). 

Let V ,  , V , ,  ... be a sequence of open subsets of M as 
given by Lemma 3.4.3. We may assume that each V, has compact 
closure. Let hi: (V,  , Vi n X )  --H (En,  E;) be a homeomorphism for 
i = 1, 2, ... . 

Sequences Q1, Q, , ... of n-cells in M and g, , g, , ... of embeddings 
g,: (Q, , Q, n X )  --f (En,  E:) will be constructed so that 

PROOF. 

m m 

( a )  Q i  C Int Qi+I (b) gi+l I Q i  = gi ( c )  U Qi = U vi 9 

i=l i=l 

and 
UJ m 

(d) u gi(!2i) 1 En, (el u gi(Qi n XI = E: - 
1:=1 i=l 

Then, we may define U to be lJ7=,Qi and a homeomorphism 
g: (u, X )  - (En, E;) b y g  I Qi = gi - 

For each t > 0, B,  denotes the ball with center 0 and radius t in En. 
Let Q1 = h:'(B,), g, = h, 1 Q1 , and consider h,hi'(Bz) C En. Note that 
hz(Vl) is a compact subset of En, and so there is a homeomorphism 
4,: En - En such that +2 = identity on hzhT1(B,), +, = identity outside 
some compact set in En, + , (Et )  = E ; ,  and +,(h,h;l(B,)) contains 
h,( V,) .  (See the next paragraph for a construction of +, .) Then define 
Q2 to be ha1+2h,hi1(B,) and g, to be h,h;'&'h, I Q,. Notice that 
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gz I Q1 = hlhi%ilhz I Q1 = I Q1 = gl , Q1 C Int  Q z  , Vl C Qz , and 
gdQz , Qz n XI = (Bz 9 Bz n E?). 

The  homeomorphism +z may be obtained as follows: Let A be a 
ball with center h,h:'(O) such that A C h,h;'(Int Bl). Then there is a 
homeomorphism $: En - En such that $ = identity outside of B,,  
$(E:) = E: , and $(Bl) C h,h;l(Int A). Also, there is a homeomorphism 
$: En ---w En such that $ = identity outside of some compact set, 

= identity on A,  $(E:) = E:, and $(h2h;'(BZ)) contains hz(Vl) .  
Both $ and $ are homeomorphisms which map each half-ray emanating 
from the origin onto itself. Then, +2 may be defined by 

~ ~ i z ~ l ~ - l i z ~ i z ~ l ~ i z z i z ~ l ~ ~ l i z ~ l  on i z 2 h ~ 1 ( ~ z ) ,  

$ outside of hZh;l(B2). 

Continuing in this way, the sequences Ql , Qz , ... and g, ,g, , ... 
may be constructed, and the proof is complete. 

Although the above proof is precisely formulated, in order 
to get an intuitive feeling for the technique, one should regard (CI and $ as acting 
in M on the radial structure of Vl and Vz , respectively. 

REMARK 3.4.1. 

EXERCISE 3.4.3. Use the technique of proof of Theorem 3.4.2 to establish 
the result of Brown mentioned above which states that the monotone union of 
open n-cells is an open n-cell. 

Flattening Theorem 3.4.3 (Lacher). Let X be a closed, locally j u t  
k-half-string in En, k < n,  n 3 4. Then, (En, X )  m (En,  E:). 

PROOF. Let X be a closed, locally flat K-half-string in En, n 3 4. 
Theorem 3.4.2 supplies a neighborhood U of X in E" and a homeo- 
morphism h: ( U ,  X )  - (En, E:). Suppose that Y is a locally flat, 
closed ( n  - 1)-string in En such that Y n E: = 0 and such that 
h-I(Y) is closed in En. Exercise 3.3.3 states that locally flat, closed 
(n - 1)-strings in En are trivially embedded if n >, 4; thus, if we can 
find Y ,  and if V is the complementary domain of Y which contains E; , 
the homeomorphism g = h I h-l( Y) can be extended to a homeo- 
morphism of (En, X) onto (En,  E:) as desired. 

T o  complete the proof, Y must be constructed. If B,  is the ball 
of radius t and center 0 in En, h-l 1 B,  is uniformly continuous for 
each t. Choose ei > 0 so that any set of diameter less than ei in B, 
is mapped by h-l onto a set of diameter less than 1. Let Y be a closed, 
locally flat (n - 1)-string in En such that Y n E$ = 0 and such that 
dist(y, E$ n (B, - In t  Bi-J) < ei for each y E Y n (B, - In t  Bi-,), 
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i = 1, 2, ... , It is then clear that a sequence {yi} C Y tends to infinity 
if and only if {h - l ( y j ) )  tends to infinity, so that h-l(Y) is closed in En. 
This completes the proof of Theorem 3.4.3. 

Corollary 3.4.2. Let D be a k-cell in Sn, k \< n, n >, 4, and suppose 
that D - p i s  locally f lat ,  where p E Bd D. Then, (S", D )  M (S", P). 

Corollary 3.4.3. Let M be a k-manifold with boundary contained in 
the interior of an n-manifold N ,  k < n, n >, 4. Suppose that Int M is 
locally j7at in N ,  and denote by E the set of points of Bd M at which M 
fails to be locally p a t .  Then, E does not contain an isolated point, and 
hence E is either empty or uncountable. 

It follows from Corollary 3.4,2 that a k-cell in En, n 2 4, 
may not fail to be locally flat at precisely one point if that point is a 
boundary point, and so Corollary 3.4.3 follows by applying this result 
locally to a supposed isolated point of E. 

The  next theorem is the analog of Theorem 3.4.2 for strings. 
Techniques of the nature of those employed in this section do not seem 
to be strong enough to establish an analog of Theorem 3.4.3 for strings. 
Later, we will present some work of Stallings [2] which uses engulfing 
and from which such an analog follows for strings of codimension 
at least three when n >, 5. 

PROOF. 

Flattening Theorem 3.4.4 (Lacher). Let X be a locally flat k-string 
in the n-manifold M ,  k < n. Then, there is an open set U in M 
containing X such that ( U ,  X )  M (En, Ek). 

Three lemmas which are analogs of Lemmas 3.4.1, 3.4.2, 
and 3.4.3 can be stated and proved by letting X be a locally flat k-string 
in M ,  k < n, instead of a locally flat k-half-string, and replacing 
E: with Ek both in the statements and proofs of these three lemmas. 
Theorem 3.4.4 follows from the three new lemmas in exactly the same 
way that Theorem 3.4.2 followed from the old lemmas. 

PROOF. 

3.5. PL U N K N O T T I N G  INFINITE POLYHEDRA 

IN T H E  TRIVIAL RANGE 

A polyhedron P is said to PL unknot in the PL manifold Q if for 
any two PL  embeddings f and g of P into Q which are homotopic 
in Q, there is a PL homeomorphism h : Q  -Q such that hf =g. 
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If h can be realized by an ambient isotopy, then P is said to isotopically 
PL unknot in Q. (In the case Q = En, any two such embedding f 
and g are always homotopic.) 

Gugenheim in his classical paper [l], written under the direction of 
Whitehead, proved, among other things, the following unknotting 
theorem (Theorem 5 of that paper). 

Gugenheim’s Unknotting Theorem. A k-polyhedron PL unknots in 
E n q n  >, 2k + 2. 

EXERCISE 3.5.1. Show that Gugenheim’s unknotting theorem is a “best 
possible” result by exhibiting a p-sphere and a q-sphere which are linked in 
Sn (En) where n = p + q + 1 (see Exercise 1.6.14). 

Gugenheim’s unknotting theorem was generalized in Theorem 5.5 
of [Bing and Kister, 11 to an epsilontic type of isotopy unknotting 
theorem. A generalization (which will be applied in the next section) 
of the Bing-Kister unknotting theorem to infinite polyhedra is the 
main result of this section (Theorem 3.5.1). In  order to state this 
theorem in modern terminology we make the following definition: 
Let A be a subset of the topological manifold M which has metric d.  
If 3 0, then an €-push of ( M ,  A )  is an isotopy h ,  of M onto itself 
such that 

( 1 )  h, = 1, 

(3 )  h, I M - N,(A) = 1, 
(2) h,  is an c-homeomorphism for all t ,  

If h ,  is PL, then it is called a PL €-push of ( M ,  A). 

Unknotting Theorem 3.5.1. Suppose that P is a (possibly infinite) 
k-polyhedron, n 3 2k + 2, that L is  a Jinite subpolyhedron of P and that f 
andg  are two P L  embeddings of P into En such that dist( f, g )  < c (c 3 0)  
and f 1 P - L = g I P - L. Then, there is a P L  €-push h ,  of (En ,  f (L) )  which 
is $xed on f (CI(P - L))  such that h, f = g. (Furthermore, no point of 
En moves along a path of length as much as c.) 

If K is a finite k-complex, a prismatic triangulation of K x I 
is a triangulation for which there is an ordering of the vertices of K ,  
vl , v2 , ..., vp such that the triangulation includes all faces of s-simplexes 
of K x I ,  1 < s < k + 1, having vertices 

(Vi, I I), ( V i a ,  I), ..., (Vi ,  9 11, ( V i ,  I O ) ,  .*.> ( V i a  ? 0 )  

for some choice of integers il < i2 < 
span a simplex in K,  and for some j ,  1 < j  < s. 

< i, , where vil , v i2 ,  ..., vi, 
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EXERCISE 3.5.2. Show that every ordering of the vertices of a complex K 

The following lemma is included only to motivate the proof of 

determines a prismatic triangulation of K x I. 

Lemma 3.5.2 and may be skipped if desired. 

Lemma 3.5.1. Let K be a (possibly infinite) k-complex and let L be 
a j n i t e  subcomplex of K. Let K x I have a triangulation which contains 
a prismatic triangulation of L x I as a subcomplex'. Let X be the set of 
vertices in I K I - Cl(I K I - I L 1 )  and let R = uVex St(v x I ,  K x I ) .  
Suppose E > 0 and f is a map of K x I into En such that f I ( K  x 0)  U R 
is an embedding, f (x, t )  = f ( x ,  0 )  for  each vertex x of K not in X, f is 
linear on each simplex in K x I and f  (v  x I )  has length less than E for each 
vertex v in X .  Then there is a P L  €-push h ,  of (En, f (L  x 0))  which is  
f x e d  o n f ( C l ( K  - L)  x I )  such that h , f ( x ,  0 )  = f ( x ,  1) for  each x E K. 
(Furthermore, no point of En moves along a path of length as much as E . )  

(See Fig. 3.5.1.) 

-A I 

I 

0 
u; u; 

K x I  

Figure 3.5.1 

PROOF. Let vl*, v2*, ..., v,* be the ordering of the vertices in X 
induced by the ordering of the vertices of L which determines the given 
prismatic triangulation of  L x I .  For convenience denote f ( v i * ,  0) and 
f ( v i * ,  1) by ui* and wi*, respectively, and let KO = f ( K  x 0). The  
isotopy h,  will be constructed by taking the ui* onto the wi* one at a 
time. 

T h e  isotopy is broken into m pieces-one for each vertex of X .  
Each h ,  will be linear on each simplex of K O .  In  general hilm(uj*) is 
wi* or ui* depending on whether j < i or j > i. Hence, hllm moves 
ul* to wl*, h21m moves u2* to w2*, and so forth. Since each h ,  is linear 
on each simplex of K O ,  this completely describes each hilm(Ko). We 
denote hilm(Ko) by Kilm. 

Denote by Yi the complex h(i-l)lm f (LK(v,*, K )  x 0). Then Yi is the 
link of ui* in K(i-l),m . For each simplex u in Y; , the join [ul*, wl*] * u 
intersects KO only in ul* * u since [ul*, wl*] * u C R, f I R is an 
embedding, f ( R )  n f ( ( K  - L)  x I )  = 8; and f is linear on each 
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simplex in K x I. Then, [ul*, wl*] * Y; intersects KO only in ul* * Zl . 
I n  general [ui*, wi*] * pi intersects K(i-l)/m only in ui* * pi .  

I t  is not difficult to obtain a 
PL n-ball Bln such that 

Construction of h ,  for 0 < t < l / m :  

( I )  

(3) 

(4) 
As t moves from 0 to l / m ,  let h ,  move ul* linearly to wl*. For each t ,  

h,  (0 < t < l/m) is fixed on En - Bn and is linear on each segment 
from u1 to Bd Bn. Note that if h ,  (0 < t < l/m) moves a point at all, 
it moves it in a straight path parallel to the vector from ul* to wl*. 
Also note that h,  (0 < t < I /m)  does not move any points of KO except 
possibly those in ul* * Zl . If p is a point in a simplex of KO in ul* * Zl 
and p has barycentric coordinates (xl , x 2 ,  ..., x j )  with .Zxi = 1 and x1 
associated with the vertex ul*, the length of the path through which 
p is moved under h ,  (0 < t < l /m)  is x1 times the distance from ul* 

([ul*, wl*] * 21) - g1 C Int  Bln, 

Bln is starlike with respect to each point of [ul*, wl*] (that is, 

Bln lies in a small neighborhood of [ul*, wl*] * T1. 

(2) Bln n KO = ul* * Y1. 
given y E [ul* ,  wl*],  Bn = y * Bd Bn). 

to wl*. 

Construction of h ,  for i /m < t < (i + l)/m, i = 1, 2, ..., m - 1: I n  
a similar fashion, the other ui*'s are pushed one at a time over to the 
corresponding wix 's. In  general, let Bin be a PL n-ball which satisfies the 
properties corresponding to Bln above. Chooseg, [ l /m < t < (i + I ) /m] 
to be an isotopy such that gi/ ,  = 1,  g ,  I En - Bn = 1 I En - Bn, 
g, moves straight to w$+~ , and for each t ,  g ,  is linear on each segment 
from u?+~ to Bd B". 

The  €-push h ,  of ( E n , f ( L  x 0)) is defined to be glhi,, for i /m  < 
t < (i + l ) /m.  

Verify that, by choosing Bin to lie in a small enough 
neighborhood of [ui* ,  wi*] * Yi, h, is indeed an r-push of (E'" f(L x 0)) by 
showing that no point of En moves along a path of length as much as E .  (Hint: 
First consider points of KO and then the remaining points of En. )  

EXERCISE 3.5.3. 

EXERCISE 3.5.4. Prove Theorem 3.5.1 for the case n > 2k + 3 by using 
Lemma 3.5.1. 

Lemma 3.5.2. Let K be a (possibly infinite) k-complex and let L be 
a jh i t e  subcomplex of K. Let K x I have a triangulation which contains a 
prismatic triangulation of L x I as a subcomplex. Let X be the set of 
vertices in j K 1 - Cl(l K 1 - J L I) and let H = uvgx St(v x I ,  K x I). 



114 3. Flattening, Unknotting, and Taming Special Embeddings 

Suppose that f is a map of K x I into En which is linear on each simplex of 
K x I a n d  is such that f ( R )  n f ( ( K  - L)  x I )  = 0 and f ( x ,  t )  = f ( x ,  0)  
for (x, t )  E ( K  x I )  - R. Suppose further that a and b are numbers, with 
O < a < b < l , a n d ~ > O s o t h a t f I R * , w h e r e R *  = ( K x [ a , b ] ) n R ,  
is an embedding and f (vi x [a, b ] )  has length less than E for each vi E X .  
Then, there is  a PL €-push h ,  of (En, f ( L  x a) )  which is $xed on 

f (Cl(K - L)  x I )  such that h, f ( x ,  a )  = f (x, b)  for  each x E K. (Further- 
more, no point of En moves along a path of length as much as €.) (See 
Fig. 3.5.2.) 

KX I f ( K x  I )  

Figure 3.5.2 

PROOF. (In proving this lemma one is tempted to seek a certain 
kind of triangulation of K x [a, b] that will enable one to apply the 
preceding lemma. However, in the case K = 2, n = 3, there is no 
triangulation of K x [a, b] such that each simplex lies in a simplex 
of K x I and has a vertical edge. Hence, we must modify the technique 
developed in the proof of Lemma 3.5.1.) 

Let vl*, vZ*, ..., om* be the ordering of the vertices in X induced by the 
ordering of the vertices of L which determines the given prismatic trian- 
gulation ofL x I .  Let w,* = f (v i* ,  a ) ,  ui* = f(vi*, b), K, = f ( K  x a) ,  
and T be the cellular subdivision off(R*) such that C is an element 
of T if and only if C is the image under f of the intersection of R* 
with a simplex in K x I .  

Let C, be the union of all elements of T which have [wi*, ui*] as 
an edge. Let A, be a collection of all maximal segments in C, parallel 
to [wi*, ui*]. We regard these segments as oriented in the direction 
from wi* to u,* and refer to the sum of all lower ends of all such segments 
as the bottom of Ci and the sum of all upper ends as the top of C,. 
Our isotopy is broken into m pieces, one for each C, . 

The only points of K,  that 
move under this part of the isotopy are those on the bottom of C,  
and h1lm carries these bottom points of C, to the corresponding top 
points of C,. Any point of En that moves at all, moves parallel to 
[w,*, ul*] and in the direction from w,* to ul*.  Only points “close” 
to C, move. T o  get such an isotopy one might first enlarge the collection 
A, in a P L  fashion to  a continuous collection B, such that each element 

Construction of h ,  for 0 < t < l / m :  
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of B, is either a point or a segment parallel to [wl*,  ul*] ,  each line 
parallel to [w,*, ul*]  contains one and only one element of B,,  no 
nondegenerate element of B, intersects K, except those in A , ,  and 
each point of a nondegenerate element of B, lies close to C, . Let E ( b )  
be a continuous PL map which takes on small nonnegative real numbers, 
such that E(b) = 0 if and only if b is a degenerate element of B, and 
if b+ denotes the segment obtained by extending b a distance of ~ ( b )  
in both directions, then b+ - b misses Ka . The  isotopy is fixed except 
on the bf’s and moves points along them so that the lower end of each b 
is moved to its top. 

Construction of h,  for i/rn < t < (i + l)/rn, i = 1, 2, ..., rn - 1: 
Define h,  = glh,/,(l/rn < t < 2/m) where g, is as follows: go is the 
identity; the only parts of hllm(Ka) that move under g, are those on 
the bottom of C, and g2/, carries these bottom points to the corre- 
sponding top points of C, ; any point of En that moves at all, moves 
parallel to [we*, u2*] and in the direction from w2* to u,*; only points 
close to C, are moved. 

We continue defining h,  (0 < t < 1) in this fashion until Ka has been 
moved ontof(K x b). In  general, h,  = glh(i-l),m((i - I ) /m  < t < i /m)  
where g( i - l ) /nL is the identity, gi/, pushes the bottom of Ci to the top, 
and g, otherwise behaves in a decent fashion as suggested above. 

The  fact that no point of En moves along a path of length as much 
as E ,  follows in a fashion suggested by Exercise 3.5.2 by insisting that 
nondegenerate elements of B, lie close to C, . 

Let CT and T be two joinable simplexes in En. A point p in u * T divides 
a, T in the ratio a to b if p divides the segment from u to T on which it 
lies in the ratio a to 6. 

In  En, let X be a finite set of points, Y be a possibly infinite set of 
points, and Y* be a finite subset of Y. Then, X is in ratio changing 
general position with respect to the pair ( Y ,  Y*)  if the following two 
conditions are satisfied. 

No point p of X lies in an r-hyperplane ( r  < n - 1) determined 

If u1 , u2 are disjoint simplexes with vertices in X and T ~ ,  T, are 

1. 

2. 
by points of X u Y - { p } .  

disjoint simplexes with vertices in Y* where 

dim u1 + dim u2 + dim T ,  + dim T~ < TI - 2, 

then either ( C T ~  * TJ n (uz * T ~ )  = (3 or the point of intersection of 
these two joins divides u1 , T, in a different ratio from the ratio in which 
it divides U, , T ~ .  
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Lemma 3.5.3. Suppose that in En, X is a jinite set of points, Y is  a 
possibly injinite set of points and Y* is a jinite subset of Y such that X 
is  in ratio changing general position with respect to the pair ( Y ,  Y*). 
Then, the set 

X, = { p  1 X u { p }  is in ratio changing general position 

with respect to ( Y ,  Y*)} 
is dense in En. 

PROOF. It follows from the Baire category theorem that the set A 
of points which are not in the countable number of r-hyperplanes 
( r  < n - I )  determined by the various tuples of points of X u Y is 
dense in En. Thus, A satisfies the first restriction imposed by ratio 
changing general position. 

We will be through if we can show that each open set No contains 
an open set N such that for each point p of N n A,  X u { p }  is in ratio 
changing general position with respect to ( Y ,  Y*). In  order to do this, 
consider disjoint simplexes u1 , u, with vertices in X and disjoint 
simplexes T ~ ,  T, with vertices in Y* such that 

dim u1 + dim cr2 + dim T, + dim T, < n - 3. 

Let p ,  be any point in No n A and let uI’ be the simplex p ,  * u1 . 
If ul‘ * T~ misses u2 t T ~ ,  choose Nl to be a neighborhood of p ,  so 

small that N ,  C No and for each point p in Nl n A,  ( p  * u,) * T~ misses 
u, * 7,. If u,’ * T] intersects u, * T, in a point q but does not divide 
u,’, T~ in the same ratio that it divides u, , T, , then we also pick Nl to be a 
small neighborhood of p ,  . If q divides u,’, 7, in the same ratio that 
it divides u, , T, , consider the simplex rl’ consisting of all points p 
such that q divides some segment from p to a point of T, in the same 
ratio that q divides u, , 7,. Let p ,  be a point of No which is in the 
r-plane determined by ul’ * T, , but which is not in the plane determined 
by u1 and 7,’. Then, p ,  serves the role of p ,  in the preceding two cases 
and we can get a small N ,  containing it. 

A finite number of applications of this method to all possible ui in X 
and T$ in Y*, i = 1, 2, where each Ni is chosen to lie in the preceding, 
leads to an N satisfying the conditions of the lemma. 

Lemma 3.5.4. Let K be a (possibly injinite) k-complex in En and let 
L be a jinite subcomplex of K .  Let Y be the vertices of K ,  let Y* be the 
vertices of L and let X = {vl*, v,*, ..., v,*} be the vertices of K in 
I K 1 - C1(( K I - 1 L I). Then, given E > 0, there is a PL 
€-push h ,  of (En, I L I) which is fixed on C1(( K I - I L I )  such that 
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{h,(vl*),  h,(v2*),  ..., hl(v,rt*)} is in ratio changing general position with 
respect to the pair ( Y ,  Y*)  and h, is linear on each simplex of K. (Further- 
more, each point of En moves along a polygonal path  of length less than €.) 

Our isotopy is broken into pieces, one for each vi*. For 
convenience in notation in describing the ith piece, we suppose that 
vl*, v2*, ..., v?-, are already in ratio changing general position with 
respect to ( Y ,  Y*)  and h(i-l) ,m is the identity. 

Let D be a ball of small radius centered at vi*. Then, it is not difficult 
to obtain a PL n-ball Bn such that 

PROOF. 

(1) (vi* * L )  - L C Int Bn, where L is the link of vi in K,  
(2) Bn n K = vi* * L, 
(3) Bn is starlike from each point of D, (that is, given y E D, 

(4) Bn lies in a small neighborhood of vi* * L. 

Lemma 3.5.3 implies that there is a point ui' in D very close to ai* 
so that {vl*, v2*, ..., vi'} is in ratio changing general position 
with respect to Y .  Then, h,  ( ( i  - l ) / m  < t < i / m )  is the identity 
outside Bn, h ,  moves vi* linearly to vi' as t moves from ( i  - l ) / m  
to i / m  and for each t ,  h,  is linear on each segment from vi to Bd Bn. 
Note that paths swept out are short (no more than dist(v,* , v,')). 

B" = y * Bd Bn). 

Proof of Theorem 3.5.1. Regard K as a triangulation of P that 
contains a triangulation of L, which we also call L,  such that f and g 
are linear on each simplex of K.  Let Y denote the image of the vertices 
of K under f, let Y* = { f ( v l ) , f ( v 2 ) ,  ..., f(v,)} where v l ,  v 2 ,  ..., vp are 
the vertices of L, and let X = {TI,*, v2*, ..., v,*} be the set of vertices 
of 1 K I - Cl(l K I - I L 1 )  with the ordering induced by the above 
ordering of the verticts of L. By using Lemma 3.5.4, we may assume 
that { g(v,*), g(v,*),  ..., g(v,*)} is in ratio changing general position 
with respect to ( Y ,  Y*). 

Let K x I be triangulated to contain a prismatic triangulation 
of L x I relative to the ordering v l ,  v 2 ,  ..., up as a subcomplex. 
Let F :  K x I -+ En be the map defined by F ( v ,  t )  = f ( v )  for all 
(v, t )  E ( K  - L )  x [0, 13, F(v,  , 0) = f ( v i )  and F ( v ,  , 1) = g ( v i )  for the 
vertices v1 , v 2 ,  ..., up of L and F is linear on each simplex of K x I. 
Let R = uvpx St(v x I ,  K x I ) .  I t  is not necessarily true that F I R 
is a homeomorphism since there may be two simplexes whose images 
intersect. However, since { g(v ,*) ,  g (v2*) ,  ..., g(v,*)) is in ratio changing 
general position with respect to ( Y ,  Y*) ,  there is a sequence 
0 = to < t ,  < ... < t j  = 1 such that F is a homeomorphism on each 
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( K  x [ti-,, ti]) n R. Hence, the theorem follows from j applications 
of Lemma 3.5.2. 

REMARK 3.5.1. In proving Theorem 3.5.1, one is tempted to use the methods 
of Lemma 3.5.1 to move thef(vi*) to theg(vi*). If this method had worked, we 
could have used ordinary general position arguments and not resorted to the 
more complicated ratio changing general position. However, this method fails. 
Suppose u1 , u2 are two disjoint simplexes of f(L) having v1 , w 2 ,  repectively, as 
vertices in X .  If g ( q )  *f(ul) intersects g(v2) * f ( 0 2 )  in a point q near both g(wl) 
andf(w,), then the first piece of an isotopy like that used in Lemma 3.5.1 would 
move a point near f(q) to q and the second piece would move q near g(vJ ,  
thereby sweeping out a path of length perhaps longer than E. 

Theorem 3.5.1 was stated in a form for application in the next section, 
however the techniques of this section suffice to prove the following 
theorem. 

Unknotting Theorem 3.5.2. Suppose that K is a (possibly infinite) 
polyhedron and that L is a subpolyhedron of K. Suppose that ~ ( x )  is a pos- 
itive real-valued function defined on K .  Then, there exists a positive real- 
valued function S(x) defined on Ksuch that for any two PL embeddings f ,  g :  
K -+ En such that dist(f(x), g(x) )  < S(x)for  all x E K and f 1 L = g I L, 
there is an €(%)-push (defined analogously to €-push) h,  of (En, f (K - L)) 
which is fixed on f(L) such that h,f = g .  Furthermore, h ,  is PL modulo 
En - ( C 4 f  (0 - f (K)) .  

3.6. E(x)-TAMING LOCALLY TAME EMBEDDINGS 

O F  INFINITE POLYHEDRA IN T H E  TRIVIAL RANGE 

About 1962 a major breakthrough was made in the taming of general 
objects in [Gluck, 1, 21 where it was shown that, by using techniques 
of [Homma, I] and of [Bing and Kister, I] (developed in the last section), 
a locally tame embedding of a polyhedron into a PL manifold is d a m e  
in the trivial range. (Much of the credit for this result is due to the 
creativity of Homma, since in [I]  he developed the key techniques of 
the proof. Gluck observed that the “global” tameness condition of 
Homma can be replaced by a “local” tameness condition and Gluck 
also observed that Homma’s techniques allow one to tame by isotopy 
rather than homeomorphism. Cluck’s exposition of Homma’s techniques 
is more readable than Homma’s exposition.) It also followed that a 
locally flat embedding of a closed PL manifold into a PL manifold 
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is e t ame  in the trivial range. Greathouse obtained similar results in [I]. 
These results were carried further in [Bryant, 21 and [Dancis, 11 where, 
by using similar techniques, it was shown that if the set of points on 
which an embedding is not known to be locally tame is mapped into 
a tame polyhedron in the trivial range with respect to the ambient 
PL manifold, then the embedding must be tame, in the trivial range. 
The  results of Bryant and Dancis will be presented later. Other modifica- 
tions of the Homma-Gluck techniques have been employed often in 
the literature to obtain results related to the ones mentioned above. 
(For instance, see [Bryant and Seebeck, 11 and [Dancis, 21.) Later, 
in Section 5.5, we will discuss recent generalizations to lower codimen- 
sions of the results of this section as well as prove some such generaliza- 
tions which were developed in [Rushing, 241. Precise statements of 
the main results of this section follow which generalize the first results 
mentioned above to infinite polyhedra. (It should be mentioned that 
both Homma and Gluck failed to establish the solvability condition in 
the generality that they applied in their proof. However, enough care 
is taken in this section and the preceding section to eliminate this 
difficulty.) 

Taming Theorem 3.6.1. Let R be a subpolyhedron of the possibly 
infinite polyhedron Pk. Let f :  Pk -+ M n  be a locally tame embedding of Pk 
into the interior of the PL n-manifold Mn, 2k + 2 < n, such that f 1 R 
is PL. Let pk be another polyhedron and let H :  Pk - pk be a topological 
homeomorphism such that h I R is PL. Then, fh-l is c(x)-tame keeping 
fh-l(h(R)) = f ( R )  fixed. 

Corollary 3.6.1. Let f be a locally flat embedding of the (possibly 
noncompact and possibly with boundary) P L  manifold Mk into the interior 
of the P L  n-manifold M", 2k + 2 < n, such that f I R is PL where R is 
a subpolyhedron of Mk.  Then, f is c(x)-tame keeping f ( R )  fixed. 

The  short proof of the next theorem (which is included as a sidelight) 
will involve a folklore result the proof of which will not be presented. 

Unknotting Theorem 3.6.2. Let f and f' be locally tame embeddings 
of the polyhedron Pk into the unbounded PL manifold Mn. If 2k + 2 < n 
and f is homotopic to f I ,  then there is a homeomorphism h of Mn onto itself 
which is isotopic to the identity such that hf = f I .  

EXERCISE 3.6.1. Show that any PL manifold M n  can be remetrized so that M 
is complete in the new metric and so that sets of sufficiently small diameter can 
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be enclosed in an n-cell lying in M .  (Whenever we have occasion to use a metric 
in this section, we will assume that it has these two properties.) 

Let M be a manifold and let x E M ,  then we define 

N,(x) = {y E M I dist(y, x) < e} .  

Let E(X) be a positive continuous function defined on X C  M .  By the 
E(x)-neighborhood of X ,  N,  (z)CX), we mean UzEX N ,  (.Jx). If E(X) is 
defined on all of M ,  we define an E(x)-isotopy of M to be any isotopy 
e,: M-+ M such that e, = 1 and dist(x, e,(x)) < E(X) for all X E  M 
and t E I .  An E(x)-isotopy of M is called an  E(x)-push of ( M ,  X) if 
e, = identity outside N c ( z ) ( X )  for each t €1. An embedding f of a (possibly 
infinite) polyhedron P into the PL manifold M is E(x)-tame if for 
each positive, continuous function ~ ( x )  defined on M ,  there is an  
E(x)-push e ,  of ( M ,  f ( P ) )  such that e, f is PL. If R is a subpolyhedron 
of P such that f I R is PL, then f is said to be €(+tame keeping f (R)  
fixed if for each ~ ( x )  there is an E(x)-push e ,  of ( M ,  f ( P  - R))  such that 
e, I f  ( R )  = 1 I f  ( R )  and e, f is PL. An integer k is said to be in  the trivial 
range with respect to an integer n if 2k + 2 < n. 

Let f: Pk -+ Mn be an embedding of the (possibly infinite) k-poly- 
hedron Pk into the interior of the topological n-manifold Mn. If there 
is a triangulation of Pk such that for each point x E Pk there is an open 
neighborhood U of f (x)  in M n  and a homeomorphism h U :  U -  En 
such that h,f is PL on some neighborhood of x, then we say that f is a 
locally tame embedding. 

Note that once a triangulation is chosen for Pk, the same 
triangulation must be used for deciding whether f is locally tame at each point 
x E Pk. However, if another embedding f ‘  is given, an entirely different trian- 
gulation of Pk may be used to decide whetherf’ is locally tame. Gluck in his 
definition of locally tame and throughout his papers [l, 21 uses the idea of 
abstract triangulations, that is, topological images of rectilinear triangulations. 
In order to make sense of abstract triangulations and PL maps between them, 
one must always go back to rectilinear triangulations, hence we will not use 
the notion of abstract triangulation (see the Remark 3.6.2). However, it often 
aids in the intuitive understanding of a concept to visualize the “wiggly 
structure” induced by a topological homeomorphism from a rectilinear complex. 
Although our definition of locally tame is not the same as that of Gluck, is it 
easily seen to be equivalent. (It is quite instructive to consider this equivalence 
and to notice that the hauptwermutung for open cells is not necessary to establish 
it.) 

REMARK 3.6.1. 

Let X denote a metric space and A a subset whose closure is compact. 
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Let M denote a topological manifold with a complete metric d, and let 
h :  X -+ M be a fixed embedding. Then, Hom,(X, A ;  M )  denotes the 
set of all embeddings of X into M which agree with h on X - A. If 
f, g E Hom,(X, A ;  M ) ,  we define a distance function 

W , g )  = LUB,,xd(f(x),g(x)) = LUB,,.Zd(f(x),g(x)), 

which exists because A is compact. This distance function makes 
Homj(X, A;  M )  into a metric space. 

Let F be a subset of Homj(X, A ;  M )  with the property that, for 
each g E Homf(X, A;  M )  and each E > 0, there is an f E F  with 
d ( f , g )  < E. Then, we say that F is dense in Hom,(X, A ;  M ) .  

Let F be a subset of Homj(X, A ;  M )  with the following property: 
for each E > 0 there is a 6 > 0 such that if f ’ , f ”  E F and d( f’ ,f”) < 6, 
then there is an E-push h of ( M ,  f ’ (A) )  keeping X - A fixed such that 
hf’ = f “. Then, we say that F is solvable. 

The next theorem is fundamental to the proofs of the main results 
of this section. 

Theorem 3.6.3. The union of two dense, solvable subsets of 
Homj(X, A;  M )  is dense and solvable. 

Before proving Theorem 3.6.3 we will establish four preliminary 
lemmas. In  these lemmas, M will denote a topological manifold with 
complete metric d and A will denote a subset of M with compact 
closure A. 

Lemma 3.6.1. If h ,  is an €-push of ( M ,  A) ,  then ht’ is a 2epush 

Since h ,  is an 6-isotopy, so is hy’. But h t l  may not restrict to 
the identity on M - N,(h,(A)). However, since N,(A) C N2<(h1(A)), 
h;-’ does restrict to the identity on M - N2<(h1(A)) .  The isotopy h ,  is 
invertible by Exercise 1.3.8, and so ht‘ is a 2epush of ( M ,  h,(A)). 

of (MY M A ) ) .  
PROOF. 

Lemma 3.6.2. Let hi1, h?, ..., h{ be isotopies of M such that h,’ 
is an q-push of ( M ,  A )  and h,i is an y p u s h  of ( M ,  h4-l hll(A)) for 
i = 2,  ..-, r .  Let hlo = 1 and gIi  = h,ihi-l h,O. Then, the isotopy 
g,  = h:$Yi)gli, t E [i/r, (i + l)/rJ, i = 0, 1, ..., r i san  (el + c2 + + E,)- 

push of ( M ,  A). 

Certainly for t E [i/r, ( i  + l)/r], g, is a Zi+,-homeomorphism, 
where Zi = E, + -.. + ci . Furthermore, if d(x, A )  2 2, e l ,  then 
h,‘(x) = x and d(x,g, , ,(A)) 3 Z, - Z1 3 e 2 .  But then h,2(x) = x and 

PROOF. 
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d(x,g,,,(A)) 3 Zr - Z2 3 E ~ .  Continuing in this fashion we see that 
g,(x) = x for all t ,  so that g ,  I M - NzJA) = 1. Hence, g ,  is a Zr-push 
of ( M ,  A )  as desired. 

Lemma 3.6.3. 

(1) 

(2) 

Suppose that we are given the following: 

A n  injinite sequence of positive numbers {el ,  e 2 ,  ...} such that 
el + e2 + *.. converges; 

An injinite sequence of isotopies of M ,  {hi1, h:, ...>, such that 
h,l is an cl-push of ( M ,  A)  and h,i is an q-push of(M,g:- ' (A))  for i 2 1, 
wheregli = hlih:-' 

Then, 

(1) gll ,  g12, ... converges unijormly to a continuous map g :  M -+ M ;  
(2)  gisonto;  
( 3 )  g is a 2-map, that is, d (x ,  g (x ) )  < Z for all x E M ;  

( 5 )  Let 

hll (hlo = 1); 
(3) zi = €1 + * * .  + Ed, Z = €1 + €2  + -.*. 

(4) g I M -  Nz(A) = 1. 

Then, G: M x [0, 11 -+ M dejined by G(x, t )  = g,(x) is continuous. 

to the identity on M - N,(A). 
(6)  If t E [0, l), then g ,  is a Z-homeomorphism of M which restricts 

(7) I f g  is one-to-one, then g ,  is a Z-push of ( M ,  A). 

PROOF. 
(1) If * E M ,  then d( gn(x), gn+p(x)) < En+1 + En+2 + * * *  + €n+p --. < 

Z - Zn . Then, since M is complete, the sequence of homeomorphisms 
gll ,glz,  ... converges uniformly to a continuous map g :  M --+ M .  (One 
might hope that g is the last stage of an €-push of ( M ,  A); however, 
it is easy to see that g may fail to be one-to-one.) 

Since A is compact and g is continuous, g ( A )  is compact and 
therefore closed in M .  Hence, if x E M - g ( A ) ,  then 6 = d(x ,  g ( 2 ) )  > 0. 
Choose n so large that d(x,g:-'(A)) > S/2 and ei < S/2 for i > n. 
Then, hli(x) = x for x > n. But then x = g(( g1")-l (x)), so g is onto. 

Certainly gli is a &-map, hence a Z-map for i = 1, 2, ... . 
But then g ,  as the uniform limit of the g, , is also a Z-map. 

If d(x,  A )  3 Z 2 , then x = hll (x)  = g,'(x), and d(x, g l l ( A ) )  3 
Z - Zl 3 E~ . Then, x = h12(x) = hl2hI1(x) = g12(x), and d(x ,  g12(A))  3 

(2) 

(3) 

(4) 
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Z - Zz 2 E ~ .  Continuing in this way, gli(x) = x for i = 1, 2, ... . 
Hence, g ( x )  = x. 

It is only necessary to check that G is continuous at a point 
(x, 1). If E > 0 is given, we must find a 6 > 0 and a to such that if 
d ( x , y )  < 6 and t > to then 

( 5 )  

4G(x, I ) ,  G(Y9 t ) )  = d(gCx), gt(Y))  < € 0  

First choose n so large that Z - Zn < ~ / 3 ,  and let to = n/(n + 1). 
Then choose 6 > 0 so small that d ( x , y )  < 6 implies 

d(Znl(n+&), gnl(n+l)(Y)) < 4 3 .  

Finally, if t > to and d ( x , y )  < 6, then 

U x ) ,  gt(Y)) G W x ) ,  gnW) + d(gn(x), gn(Y)) + d(gn(y), gt(Y)) 
< €13 + €13 + €13 = e. 

(6) 
(7) 

This follows in the same way as the proof of Lemma 3.6.2. 
If g is one-to-one, then g is a one-to-one map of a manifold onto 

itself and hence a homeomorphism. It follows from Properties 1-6 
that g ,  is a Z-push of ( M ,  A). 

The  problem that now remains is to find reasonable conditions which 
force g to be one-to-one. This is done in the next lemma. (This lemma, 
in effect, says that if the sequence e l ,  c Z ,  ... converges fast enough, 
then g is one-to-one.) 

Lemma 3.6.4. For each integer i 3 1, let gi be a finite covering 
of 2 by compact subsets of A of diameter less than l / i .  In addition to 
the hypotheses of Lemma 3.6.3, suppose that the following conditions hold: 

4 ~ ~ + ~  < d( gli( U ) ,  gli( V ) )  for any disjoint sets U ,  V of the covering 
(1) k + l  < Ei 1 

(2) 
gi 9 

(3) N<+l( g l i m  c Eli(&(A))* 
Then, g is one-to-one, and hence g ,  is a Z-push of ( M ,  A). 

Suppose x and y are distinct points of A. Then, for some 
integer i, there are disjoint sets U and I/ of the covering Vi such that 
x E U and y E V.  Then, 

PROOF. 

W x ) ,  d Y ) )  2 4 g l W  g l w )  - 4 g l W  g ( 4  - 4 g l i ( Y ) ,  g(Y)) 

2 4 g l Y q g l Y w )  - (Z - Zi) - (Z - Zi) 
> 4 E i f l  - 2€ifl - 2€i+l = 0, 
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by Conditions (1) and (2). Therefore, g ( x )  # g (  y),  so g I A is one-to-one. 
Suppose x 4 A. Then, x $ N,,,(A) for sufficiently large i. By Condi- 

tion (3), gI i (x )  $ N,,+,( g l i ( A ) ) .  But this means that 

g,’(x) = g’;”(x) = g”;’(x) = * * a  = g(x)- 

g(4 = g,l(x) f glYy) = d Y ) ,  

Therefore if x ,  y $ A and x # y, then for sufficiently large i, 

so g I M - A is also one-to-one. 
Suppose again that x $ A .  Then there is an open neighborhood N 

of x such that for sufficiently large i, d ( N ,  A) > l/i. By Condition (3) 
above, g l i ( N )  does not meet N ,  ( g l i (A) ) .  Hence, gli 1 N = g;+l I N = 

= g I N .  Thus, since g is a limit of homeomorphisms gl i ,  g ( N )  does 
not meet g(d) ,  that is, g(A) and g ( M  - A) are disjoint. Therefore, 
g is one-to-one. 

Let F and F‘ be dense, solvable subsets of 
Homt(X, A;  M). Then, F u F‘ is certainly dense in Homt(X, A;  M ) ,  
so it remains to show that F u F‘ is solvable. Since F is solvable, there is, 
for each e > 0, a 6(e) satisfying the condition of the definition of 
solvability. Similarly, since F‘ is solvable there is, for each E‘ > 0, 
a corresponding a‘(€’). Now let e > 0 be given. Let S ( E / ~ )  be chosen 
for F and 6 ’ ( ~ / 6 )  for F’. Finally, let 

6 = min(6(~/6), 6‘(46)). 

We will show that any two elements of F u F‘ which are closer than 6 
can be related by an e-push. If the two elements are both from F or 
both from F‘, then the existence of such an e-push follows immediately 
from the individual solvability of F and F‘ and the choice of 6. So we 
assume that f~ F and f’ E F’ and d ( f , f ‘ )  < 6 (see Fig. 3.6.1). 

**I 

Proof of Theorem 3.6.3. 

Figure 3.6.1 
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Since A is compact, let W, , for each integer i 1 ,  be a finite covering 
of 3 by compact subsets of A of diameter less than 1 /i. We will construct 

(a) a sequence of elements of F : f o  ,fl , f2, ...; 
(a’) a sequence of elements of F’:fo’,fl’,f2’, ...; 
(b) a sequence of homeomorphisms of M onto itself: h, , h, , h, , ...; 
(b’) another sequence of homeomorphisms of M onto itself: 

(c) 
(c’) 

hl’, h2’, h3’, ...; 
a sequence of positive real numbers: co , E, , E ,  , ...; 
another sequence of positive real numbers: eO’, el’, e2’, ... . 

At the same time, it will be convenient to consider 

such that gi = hihi-, -.. h,h, ; 

gl’, g2’, g3’, ... such that g,’ = h,’h;-, 

(d) a sequence of homeomorphisms of Monto itself: g, , g, , g, , ..., 

(d’) another sequence of homeomorphisms of M onto itself: 
h 2 1  ‘h ’. 

These sequences will be constructed so as to satisfy the following 
properties: 

( 1 )  dK-1 ,fi) < Y E i - l ) ,  (1‘) d(fi ,f,’) < 6(c,), 
(2) 4 f , - 1  ,fi) < 6(%-1), (2’) 4fi-1 ,f,‘) < +:-A 
( 3 )  hifi-1 = ft 9 (3’ )  h&, = fi’, 

(4) 
(4’) 
( 5 )  2ri < E ~ - ~ ,  c0 = 46 ,  
( 5 ‘ )  2ci’ < ciPl , cO’ = e/6, 
(6) 

(6’) 

hi can be realized by an (Ei-l)-push of (M,f,-,(A)), 
hi‘ can be realized by an (&)-push of (M,f i - l (A)) ,  

4 ~ ,  < d( gi( U ) ,  gi( V ) )  for any disjoint sets U ,  V of the covering 

4 ~ ~ ’  < d( g,’( U ) ,  gi’( V ) )  for any disjoint sets U,  V of the covering 
vi, 

vi 9 

(7) N i ( g i f ( q  c g,(%d.m)), 
(7’) N,(Ei ’ f ‘ (A) )  c gi’(%/i(ff(4)). 

To start off, let fo = f, fo’ = f’, c0 = c/6 = eO’. Condition (1’) is 
satisfied for i = 0 because 

4 f o  ,fo’) = Wf’) < 6 < 8(€/6)  = S ( E O )  

Conditions ( 5 )  and (5 ‘ )  are also satisfied for i = 0. None of the other 
conditions make sense for i = 0. 

Since F is dense in Homf(X, A;  M ) ,  choose fi E F such that Step 1. 

4fo’lfi) < min(S’(%?, %o) - 4 f o  ,fo’)>. 
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Then not only do we get 

but also 
4fO'Jl) < %l7, 

4 f o  ! fl) G 4 f o  9 fo') + 4f,', fl) 
< 4 f o  ,fo'> + &O) - 4 f o  y f o ' )  = &O)* 

This takes care of Conditions (1) and (2) for i = 1. 
Since d ( f ,  ,fl) < S(eO), there is, by solvability ofF,  a homeomorphism 

h, of M which can be realized by an €,-push of (M,f ,(A)) such that 
hlfo = fl . This takes care of Conditions (3) and (4) for i = 1. Finally, 
choose to satisfy Conditions (9, (6), and (7) for i = 1, to complete 
Step 1. 

Step 1'. Referring to Condition (1) for i = 1, we have 

d(fo',fl) < 8 (Eo'). 

Hence, by denseness of F' in Homj(X, A ;  M )  we can choose an element 
fl' E F' satisfying 

4fl tfl') < m i n ( W ,  &YE;) - 4fo',fl))* 

4fl jfl') < @l), 

Then we get 

and also 
d(fo'3fl') G d(fo',fl) + 4 f l  ,A')  

< W O ' , f i )  + q € o ' )  - d(fO',fl) = 8'(EO'), 

thereby satisfying Conditions (1') and (2') for i = 1. Since d(f,',f,') < 
S'(E,'), there is, by the solvability of F' a homeomorphism h,' of M which 
can be realized by an (€,')-push' of (M, fo ' (A) )  such that hl'fo' = fl'. 
This takes care of Conditions (3') and (4') for i = 1. Finally choose 
el' satisfying Conditions ( 5 ' ) ,  (6'), and (7') for i = 1, completing Step 1'. 

Now all the Conditions (1) through (7') have been satisfied for i = 1. 
The six sequences are then constructed inductively in this manner. 

Since hi can be realized by an (Ei-l)-push of (M,fi-l(A)), we can 
apply Lemmas 3.6.3 and 3.6.4 to learn that the sequence of homeo- 
morphisms 

converges uniformly to a homeomorphism g of M which can be realized 
by an (r/3)-push of (M,f(A)). Similarly, the sequence of homeo- 
morphisms 

gl', g2', Is', a * -  

gl 9 g2 9 g3 9 * * *  
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converges uniformly to a homeomorphism g’ of M which can be realized 
by an (~/3)-push of ( M ,  f ’(A)). 

I t  follows from Condition (3) that 

g i f  = f i  t 

gay-’ = fi‘. 

d (g i f ,  gi’f’) < 8 ( ~ i ) *  

and from Condition (3‘) that 

Then from Condition (1’), 

Since the converge to zero, so do the and therefore 

or equivalently, 

Since g‘ can be realized by an (~/3)-push of (My f ’(A)), it follows from 
Lemma 3.6.1 that (g’)-l can be realized by a (2~/3)-push of ( M ,  g‘f’(A)).  
Hence, it follows from Lemma 3.6.2 that ( g’)-’g can be realized by 
an €-push of (M,  f (A)). Since (g‘)-’gf =f’, F u F’ is solvable as 
desired. 

Notice that a theorem more general than the one below and more 
general than Homma’s original theorem will follow immediately once 
Theorem 3.6.1 is proved. 

gf = g Y ,  

(g’1-l gf = f’. 

Theorem 3.6.4 (Modified Homma Theorem). Let Mn be an un- 
bounded PL n-manifold and let g :  En -+ Mn be an embedding. Let Pk 
be a (possibly inJinite) k-polyhedron and f :  P k  --t En be a P L  embedding. 
Suppose that L is a finite subpolyhedron of Pk such that g f  I Cl(P - L) 
is PL (see Fig. 3.6.2). I f  2k + 2 < n, then for  any E > 0, there is an 
€-push h ,  of ( M n , g f ( L ) )  such that 

h,gf 1 Pk: Pk-+ M n  

is PL and h, I &(Pk - L) = 1. 

PROOF. Let F ,  denote the set of PL  embeddings of Pk into En 
in Homf(Pk, L;  En). Among these is, of course, f :  Pk + En. Because 
2k + 2 < n, it follows from Corollary 1.6.5 that F ,  is dense in 
Hom,(Pk, L; En). That F ,  is solvable follows from Theorem 3.5.1. 
Let 

F = {gf* I f *  E F * h  

Then, F is dense and solvable in Hom,,(Pk, L;  g(En)). 
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r ‘1 & 
Pk 

f - 

Figure 3.6.2 

Sinceg(En) is an open subset of Mn, it inherits a PL structure from Mn. 
Let F‘ denote the set of all PL embeddings of Hom,,(Pk,L,g(En)). 
As above F’ is also dense and solvable. 

By Theorem 3.6.3, F u F‘ is dense and solvable. Using the denseness 
of F’, first find an embedding f ‘ E F’ within SFyF,(e)  of the embeddinggf. 
Then, because F u F’ is solvable, there is a €-push h, of ( g(En), g f ( L ) )  
such that hlgf I Pk = f ‘ and such that 

h, I g j ( P  - L )  = 1. 

For sufficiently small e, h,  will extend via the identity to an €-push of 
( M n , g f ( L ) ) .  This completes the proof of Theorem 3.6.4. 

Lemma 3.6.5. Let F C F‘ C Hom,(X, A;  M). Suppose that for each 
f ’ EF’ and each E > 0, there is an €-push h,  of (M, f ’(A)) such that 
f = h, f ’ is an element of F. If F is solvable, then so is F’ solvable. 

Since F is solvable, there is for each B > 0 a corresponding 
S(E) satisfying the definition of solvability. T o  show that F’ is solvable, 
let E > 0 be given. We claim that 

PROOF. 

a’(€) = 6(~/4)/2 

will exhibit the solvability of F‘. 
Suppose that fl‘, f2‘ E F’ and d( fl’, f2‘) < S f ( € ) .  Let 

e* = min(6(~/4)/4, 44). 

Let h,l and h,2 be €*-pushes of (M, fl’(A)) and (M, f2’(A)) such that 
fi = hllf,’ and f2 = h12j2‘ are elements of F, according to the hypothesis 
of the lemma. Then, 

4fl , f 2 )  < d(f1,fl’) + Wi’9fi’) + 4 f i ’ , f 2 )  
< €* + a’(€) + € *  
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According to the solvability of F, there is an (r/4)-push h,  of (M, f l (A ) )  
such that hlfl = f 2 .  Furthermore, since h,2 is a (~/4)-push, (h,2)-l is 
an (~/2)-push by Lemma 3.6.1. Then by Lemma 3.6.2, (h12)-l hlhll can 
be realized by an €-push h,' of (M, f l ' (A) )  such that hl'fl' =fz', and 
so F' is solvable. 

Proof of Theorem 3.6.1 

Case 1. (In this case let Pk be finite, let pk = Pk and let h = 1. 
This will show embeddings of finite polyhedra to be €-tame in the 
same structure in which they are locally tame.) 

Referring back to the definition of locally tame, let us call a subset 
A C P small if there is a neighborhood V of A in Pk, a neighborhood U 
off ( A )  in Mn, and a homeomorphism h,: U * En such that 

(1) f ( V )  = unf(pk>, 
(2) h,f: V --+ En is PL with respect to the induced P L  structure 

on V as an open subset of Pk. 

Take a triangulation K of Pk (which contains a triangulation of R) of 
mesh so fine that the stars of simplexes are small (see Theorem 1.4.2). 
Let uo , u1 , ..., a, be the simplexes of K (in order of nondecreasing 
dimension if you like). Let Hi = St(Bi , K"), where Bi is the barycenter 
of ui and K" is the second barycentric subdivision of K. (If Pk were 
a PL manifold then the Hi would be the handles constructed in 
Theorem 1.6.1 1.) 

The plan is to define, with the help of Theorem 3.6.4, k + 1 isotopies 
of Mn 

ht0, ht', ..., h t k  

with the properties: 

h,of I H,: H ,  + Mn is PL;  

that h1ihf-' 

(a) hp  is an ( c / ( k  + 1))-push of ( M n , f ( H o  - R)) such that 

(b) h,i is an ( c / ( k  + 1))-push of (M", h;-'h;-' - * .  hlof(Hi - R)) such 

(c) h,i I f(R) = 1 for all i. 

Then, an application of Lemma 3.6.2 with A = f ( P k )  will complete the 
proof. 

Since H ,  is small, there is a neighborhood V, of Ho in Pk, a 
neighborhood U, off (H,) in M n  and a homeomorphism h U :  U, - En 
satisfying (1) and (2) above. T o  apply Theorem 3.6.4, let 

h,of I Uiz1 Hi: (JiC1 Hi + Mn is PL for i = 1, 2, ..., k .  

Step 0. 

(M",  g, Pk, Lf, E )  = (M", , I Ho I u ( R  n VO), ffo - R, h U , f ,  + 1)). 
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Theorem 3.6.4 then asserts the existence of an ( ~ / ( k  + 1))-push h,O of 
(M", h $ z ~ ~ f ( H ~  - R)) = ( M m , f ( H 0  - R)) such that 

I (Ho) u ( R  n Vo) = f  I I Ho I LJ ( R  n Vo) 

is P L  and 

This completes Step 0. 

Step i. Suppose that we have constructed isotopies h j ,  0 < j  < i - I 
with the Properties a, b, and c above. Since H ,  is small, there is a neigh- 
borhood U, of f (Hi) in Mn and a homeomorphism hu,: Ui - En 
satisfying Properties (1) and (2) above. T o  apply Theorem 3.6.4 let 

Then, Theorem 3.6.4 asserts that there is an ( e / ( k  + 1))-push h,i of 
(Mn, hl-l hllhlOf(Hi - R)) such that 

is PL and 

Thus, hIihf-' - * *  h,Of I u:=, Hi is PL and the inductive step is complete. 

(In this case allow Pk to be infinite, but again let pk = Pk 
and let h = 1.) This case follows easily from Case 1 by applying that 
case an infinite number of times to larger and larger "chunks" of Pk each 
time staying fixed on the part already fixed up as well as on f(R). 

(This time we will handle the case that Pk - R is compact 
and Mn = En.) I n  this case we have the following situation: R is a 
subpolyhedron of the possibly infinite polyhedron Pk and Pk - R is 
compact; f: Pk - En, 2k + 2 \< n, is a locally tame embedding such 
that f j R is PL;  pk is another polyhedron and h: Pk - pk is a 
topological homeomorphism such that h I P is PL. We must show 
thatfh-' is €-tame keeping fh-l (R)  =f(R) fixed. 

Case 2. 

Case 3. 
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Let F, be the set of all PL embeddings in Hom,(Pk, Pk - R; En); 
F,’ the set of all locally tame embeddings in Homf(Pk, Pk - R; En); 
F, the set of all embeddingsg in H,(Pk, Pk - R; En) such that gh-l is PL;  
and F,‘ the set of all embeddings g in H,(Pk, Pk - R; En) such that gh-l 
is locally tame. F, and F, are dense in Hom,(Pk, Pk - R; En) by general 
position (see Corollary 1.6.5) and are solvable in Hom,(Pk, Pk - R; En) 
by Theorem 3.5.1. Thus, by Case 2 and by Lemma 3.6.5, F,’ and F,’ 
are also dense and solvable. 

Now by Theorem 3.6.3, F,’ U F, is dense and solvable. Given E > 0, 
there is a 6 > 0 such that any two elements in F,’ u F, which are 
closer than 8 can be related by an €-push. Since F, is dense in 
Homf(Pk, Pk - A, En), choose f, E F, so that d( f, f,) < 6. Then, there 
is an €-push h ,  of (En, f(Pk - R)) keeping f(R) fixed such that 
h,f = f, . Thus, h,fh-l = f2k1 and since f,h-l is PL we have shown 
that h,  is the desired €-push. 

This case follows easily from Case 3 
by a technique similar to that used in the proof of Case 1. 

Case 4 (The general case). 

Proof of Corollary 3.6.1. If we can show that f: M k  --+ Mn is 
locally tame, then the corollary will follow from Theorem 3.6.1. 
Since f is locally flat, for each point X E  Mk,  there is a neighbor- 
hood U of f (x) in Mn and a homeomorphism hut of ( U ,  U n f ( M k ) )  
onto either (En, Ek)  or (En, E;). Let g: Ek (or E;) -++ f -l( U n f (Mk))  

be a P L  homeomorphism, and consider hLIlfg taking Ek (or E:) onto 
itself. I t  is easy to construct a homeomorphism K of En onto itself 
such that kh/fg = 1. Hence, k h / f  =g-l is PL and hu = khU‘ 
is the desired homeomorphism of U onto En which shows f to be 
locally tame at x. 

REMARK 3.6.2. In  proving a special case of the corollary, Gluck [ I ]  refers 
to a certain “product” triangulation which illustrates the fuzziness that can 
occur if one does not always keep in mind that in order to make sense out of 
abstract triangulations one must always go back to rectilinear triangulations. 

Proof of Theorem 3.6.2. Before the statement of Theorem 3.6.2, 
we said that our proof involves a folklore result. That  result is that 
the set of al lPL embeddings in Homf (Pk, P k ;  Mn) is solvable. (A suggestion 
for proving this result is to use Theorem 3.5.1 locally. In  1966 the author 
watched Machusko struggle through a rigorous proof of this result and 
we hope that the interested reader will carry out a similar struggle.) 

Since f and f ’  are homotopic, there is a sequence of continuous maps 

f =go,g13...,gr =f‘ 
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of Pk into M n  such that d( gi ,go , )  < 6, where 6 corresponds to some 
fixed E ic  the definition of solvability which is assured by our folklore 
result. Hence by general position there is a sequence of PL embeddings 

f = f o  I f 1  1 “ ‘ , f T  =f’, 

of Pk into Mn such that d ( f ,  , f i + J  < 6. Thus, there exist r-pushes h t  
such that hlyi-l = f i  . The theorem then follows from Lemma 3.6.2. 

3.7. ti-TAMING POLYHEDRA IN THE TRIVIAL RANGE 

W H I C H  LIE IN HYPERPLANES 

In  Theorem 2.5.1, we presented a result of Klee which said that 
every k-cell D in En is flat in En+k. The principle objective of this 
section is to generalize that result from cells to polyhedra. This was 
first done in [Bing and Kister, I]. I n  fact, the rough idea of Bing and 
Kister’s proof is to generalize the proof of Klee’s result. Let us state 
the main theorem formally before discussing it further. 

Taming Theorem 3.7.1 (Bing and Kister). Let h: Pk -+ En be a 
topological embedding of the k-polyhedron Pk into Euclidean n-space and 
let i: En -+ En+k be the inclusion. Then, ih: Pk -+ En+k is e tame .  

This theorem lends itself quite readily to generalizations. For instance, 
one easily sees how to generalize it to embeddings in manifolds (see, 
for example, Section 7 of [Bing and Kister, 11). We have already observed 
that [Bryant, 21 and [Dancis, 11 generalize, to a certain extent, the 
main theorem of the last section; in addition, they generalize the above 
theorem. Their effect is to allow En C En+k to be replaced by a locally 
tame polyhedron and not to require all of Pk to be taken into this 
polyhedron, but to require it to be locally tame where it is not. One 
might also attempt to improve the dimension restrictions, and results 
of this nature are contained in [Bryant and Seebeck, 3, Corollary 1.21 
and [Rushing, 2, Theorem 6.41. 

The  proof of Theorem 3.7.1 given here will not be the one of [Bing 
and Kister, I], but will use techniques of [Bryant, 13. This argument 
has the advantage of being shorter if one is allowed to assume the 
material of the last two sections. Also, we will have the material in 
this section available in the next section where we establish the Bryant- 
Dancis theorem mentioned above. 

Suppose that G is an open subset of a polyhedron Pk and f: Pk -+ En, 
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2k + 2 < n, is an embedding such that f I G is PL. Suppose further 
that f (Pk - G) lies in a polyhedron X C En, dim X < n / 2  - 1. Then, 
Homj(Pk, G; En) denotes the set of all embeddings of Pk into E n  that 
agree with f on Pk - G. Let F be the set of all f ’  in Hom,(Pk, G; En) 
for which there is a polyhedron 2 in G such that 

(1) f ’  I Pk - 2 = f 1 Pk - 2, and 
(2) f ’ 1 Z is PL. 

Lemma 3.7.1. The set F defined above is a dense, solvable subset of 
Hom,(Pk, G; En). 

PROOF. If E > 0 and g s  Hom,(Pk, G; En) are given, choose a 
polyhedron 2 in G such that d ( f ( x ) , g ( x ) )  < E for all X E  Pk - 2. 
By using standard extension techniques and general position arguments, 
we can extend f 1 Pk - 2 to an embedding f ’ of P k  into En so that 
f’ I 2 is P L  and d( f ’, g )  < E. By definition f ’ E F ;  hence F is dense. 

T o  see that F is solvable, let B > 0 be given and suppose that 
fo , fl EF  with d ( f o  , fl) < E. Notice that fo and fl agree with f except 
on a polyhedron 2 in G and that both f o  and fl are PL on Z. Since 
f ( P k  - G) (= f i ( P k  - G) for i = 0, 1) is contained in the polyhedron X 
with dim X < n/2  - 1, by making an additional general position 
application in the proof of Lemma 3.5.4, Theorem 3.5.1 yields an E-push 
h,  of (En, fo(Z)) such that h, fo I 2 = fl I 2 and h ,  I P LJ f (Pk - 2) = 1 .  
Thus, F is solvable. 

Taming Theorem 3.7.2. Suppose that L is a subpolyhedron of Pk 
and f is an embedding of Pk into En, 2k + 2 < n, such that f I Y is 
locally tame and f I Pk - Y is locally tame. Then, f is E-tame. 

Since Theorem 3.6.1 allows us to assume that f I L is PL 
and f 1 Pk - L is PL, the theorem follows immediately from Lemma 3.7.1 
and Theorem 3.6.3, because the set of PL extensions of f  I L is dense 
and solvable in Homj(Pk, Pk - L;  En). 

By using Theorem 3.7.2, one obtains by induction on k ,  the following 
theorem, which was first established fork = 1 and K = 2 in [Cantrell, 61 
and [Edwards, 21, respectively. 

Taming Theorem 3.7.3. 

PROOF. 

An embedding f: Pk + En, 2k + 2 < n, 
of a k-polyhedron Pk is d a m e  if  and only if for any triangulation of 
Pk, f I u is tame for each simplex u. 

Theorem 3.7.1 now follows from the above theorem and Theo- 
rem 2.5.1. 
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3.8. E(x)-TAMING EMBEDDINGS WHICH ARE LOCALLY 

TAME M O D U L O  NICE SUBSETS 

The  Bryant-Dancis result mentioned in the last two sections is the 
main theorem of this section. The  formulation here is essentially that 
of [Bryant, 21. As pointed out in the last section, generalizations are 
contained in [Bryant and Seebeck, 3, Corollary 1.21 and [Rushing, 2 ,  
Theorem 6.41. 

Taming Theorem 3.8.1 (Bryant and Dancis). Suppose that f is an 
embedding of a (possibly infinite) k-polyhedron Pk into a PL n-manifold Mn, 
2k + 2 < n, and that X is a polyhedron in Mn, dim X < n / 2  - 1, such 
that f 1 (Pk - f - l ( X ) )  is Zocally tame. Then, f is E(x)-tame. 

Before giving the proof of Theorem 3.8.1, we will establish a 
preliminary lemma. 

Lemma 3.8.1. Suppose Y is a closed subset of Pk and f a ,  f l  are 

(1) f i  I Pk - Y is P L  for i = 0, I ;  
( 2 )  f a  I y = f 1  I y ;  
( 3 )  f a (  Y )  lies in the polyhedron X C En where dim X < n/2 - 1 ; and 
(4) d(f0 , f l )  < E* 

embeddings of Pk into En, 2k + 2 < n satisjying the conditions 

Then, there is a 2e-push h,  of (En, f o (Pk  - Y ) )  such that hlfo  = f i  . 
Let G = Pk - Y so that Homto(Pk, G; En) is the set of all 

embeddings of Pk into En that agree with fo on Y.  For i = 0, 1 ,  let 
Fi be the subset of Homfo(Pk, G;  En) associated with f i  as described 
immediately preceding Lemma 3.7.1. Then, Fo and Fl are dense, 
solvable subsets of Homto(Pk, G; En) by Lemma 3.7.1, hence, by 
Theorem 3.6.3, F, u F, is also dense and solvable. 

Let 6 = 8(Fa u Fl , E) > 0. Since Fo is dense in Fa u Fl , there 
exists an fa‘ in Fa such that d( fo’, f l)  < 6 and d( fo’, f o )  < E .  From the 
proof of Lemma 3.7.1, it follows that there exists an €-push h,O of 
(En,f,(G)) such that hly0 = fo’. By the choice of 6, there exists an 
c-push h,‘ of (En,  fa ’ (G))  such that h,lf,’ = f l .  Thus, h,  = h:h,O is 
a 2e-push of (En, f , (G)) with the required properties. 

PROOF. 

Proof of Theorem 3.8.1 

Case 1 (Mn = En;  Pk compact), Let Y = f - l ( X )  and let G = 
Pk - Y.  We may assume that f 1 G is PL by Theorem 3.6.1. Let @ 
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denote the set of all P L  homeomorphisms of En onto itself. For each 
q3 E @, the embedding q3f of P k  into En satisfies the conditions that q3f I G 
is PL and q3f ( Y )  C q3(X), a polyhedron in En with dim +(X) < n / 2  - 1. 
For each q3 E 0, consider Hom,j(Pk, G; En),  which is the set of all 
embeddings of Pk into En that agree with q3f on Y.  Let Fdj denote the 
subset of Homdj(Pk, G; En) associated with q3f as described immediately 
preceding Lemma 3.7.1. Define 

F = u F,, . 
d E 0  

(a) F is dense in Hom(Pk; En), the set of all embeddings of Pk into En. 
Suppose E > 0 and g E Hom(Pk; En). Let $: P + En be an extension 

of gf-l: f (Y) 3 En. Then, by general position, there exists a PL, 
embedding 4: X + En such that d($, $) < E. Hence, by Theorem 3.5.1, 
there is a PL homeomorphism q3 of En onto itself such that q3 I X = 6. 
Thus, for each x E Y ,  d(q3f (x), g(x ) )  < E. It is not hard to obtain an 
extension f ' I :  P k  + En of q3f I Y such that d( f ' I ,  g) < E. 

Choose 6 > 0 so that each map of Pk into En within 6 o f f "  lies 
within E of g.  By applying general position arguments, we can construct 
an embedding f I :  Pk -+ En such that 

(1) d ( f ' , f " )  < 6, 
(2 )  f '  I y = f "  I y ,  

(4) f '(GI n 4x1 = 8. 
(3) f I G is PL, and 

Then f E F and d( f I ,  g )  < F. 
(b) F is solvable. 
Given E > 0, choose 6 = 6(F, E) = ~ / 6 .  Suppose that f o  , f l  E F and 

d( f o  , f l )  < 6.  Then there exist elements q30 , dl E @ for which 

c$JI Y =fi 1 Y (i = 0, 1). 

Since d(q30(y), d l ( y ) )  < 6 for each y E f ( Y ) ,  there exists a polyhedral 
neighborhood Q o f f  ( Y )  in X such that d(d0(y ) ,  q31(y)) < 6 for each 
y E Q  and 

fO(Y) CCo(Q> c NdfO(Y)), 

where NB( fo( Y ) )  is the 6-neighborhood of fo( Y) in En. 
From Theorem 3.5.1, we obtain a 6-push h,O of (En, (b0(Q)) such that 

hlo: En -+ En is PL and h,Oc$, I Q = I Q. 
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Since N 8 ( ~ o ( Q ) )  C NZ8( fo( Y ) ) ,  h,O is a 26-push of (En,  fo(  Y)), and hence 
a 26-push of (En, fo(Pk)) .  

Letf’ = h,% . Then, d( f ’, f J  < 4 2 ,  f’ I G is PL, and f ’  I Y = f l  I Y.  
By Lemma 3.8.1, there exists a $+push h,l of (En,f‘(G))  such that 
h,lf,’ = f ,  . Thus, h ,  = h,‘hp is an r-push of (En, f o (Pk ) )  and h, f o  = f l  . 

Case 1 now follows from Theorem 3.6.3, since the set of P L  
embeddings of Pk into En is dense and solvable. 

Suppose x E Pk. Let U be the interior of a 
P L  n-ball in Mn that contains f (x), and let g be a PL homeomorphism 
of U onto En. Choose a polyhedral neighborhood 2 of x in Pk and a 
subpolyhedron Q of X such that 

Case 2 (General case). 

(1) f ( 2 )  C U and 
(2 )  X n f (2) C Q  C U .  

Then, by Case 1, g f  1 2: 2 + En is tame and so f is locally tame. Case 2 
now follows from Theorem 3.6.1. 

3.9. NONLOCALLY FLAT POINTS 

O F  A CODIMENSION O N E  SUBMANIFOLD 

The proof of the main theorem of this section makes use of all of 
the preceding sections of this chapter. Before proving this theorem, 
we will state and discuss it and mention related work done by various 
mathematicians. The  theorem in the form given below appeared in 
[Kirby, I] and our proof follows the lines of proof of that paper. 

Flattening Theorem 3.9.1 (Kirby). Let f :  Mn-l-+ Nn be an em- 
bedding of a topological ( n  - 1)-manifold M without boundary into a 
topological n-manifold N without boundary. Let E* be the set of points of M 
at which f is not locally flat. Then, if n >, 4, E* cannot be a nonempty 
subset of a Cantor set C* such that C* is tame in M and f (C*) is tame in N.  

(A Cantor set in the interior or in the boundary of a topological 
manifold is said to be tame if it lies in a locally flat arc in the interior 
or boundary, respectively.) 

Corollary 3.9.1. Let g: Mn-l ---f Nn be an embedding of an ( n  - 1)- 
manifold M into an n-manifold N without boundary such that g is locally 
j u t  except on a set E*. I f  n 4, then E* contains no isolated points. 
(Thus, E* must be uncountable because, by using the Baire category 
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theorem, one can show that a closed countable subset of a manifold 
must contain isolated points.) 

No isolated points can occur on the boundary of M by 
Corollary 3.4.3. Now suppose that p E Int M and that p is an isolated 
point of E*. Choose M’ to be an open ( n  - 1)-cell neighborhood of p 
in M such that M’ n E = p and f ( M ’ )  C V C N ,  where V is an open 
n-cell. Let 01 be a locally flat arc in M‘ through p .  f ( a  - p )  is locally 
flat by transitivity of local flatness and is tame by Theorem 3.6.1. Hence, 
since f ( a )  C f ( M ’ ) C  V m En, f ( a )  is flat by Theorem 3.2.1. Applying 
Theorem 3.9.1 to f I M‘: M’ -+ N ,  we see that p 4 E*. 

Recall that in Section 3.3 we presented a result (Theorem 3.3.1) 
of Cantrell which said that an ( n  - I)-sphere in Sn, n 3 4, which is 
locally flat except at possibly one point is locally flat. For some time 
after the appearance of Cantrell’s result, it was wondered whether a 
codimension one sphere which is locally flat modulo two points is 
locally flat. In  connection with this, it was shown in [Cantrell and 
Edwards, 1, Theorem 3.51 that if no embedding of the closed manifold M 
into the interior of the manifold N fails to be locally flat at precisely 
one or two points, then every embedding which is locally flat modulo 
a countable number of points is locally flat. 

I t  was announced in both [Hutchinson, 11 and [Cernavskii, I ]  that 
by using engulfing techniques one could show the answer to the two- 
point question mentioned above to be affirmative. In  fact, Cernavskii 
announced a proof of Corollary 3.9.1, which is stronger. Other proofs 
of Corollary 3.9.1 evolved later in [Cernavskii, 4, 51 and [Kirby, 21 where 
proofs of the so-called P(n, n - I ,  n - 1, n - 2)-statement, which for 
convenience will be given below for the second time, appear. (Coroll- 
ary 3.9.1 follows easily from P(n, n - 1, n - 1, n - 2) and Coroll- 
ary 3.4.2. We will prove P(n, n - 1, n - 1, n - 2) in Section 5.2.) 

Let D,  and D,  be cells in Sn such that D,  n D ,  = aD, n aD, is a 
cell. We say that D,  u D ,  is a flat pair if there is a homeomorphism h 
of Sn such that h(D,) is a simplex and h(D, n D,) is a face of h(D,), 
i =  1,2. 

PROOF. 

P(n, m, , m2 , k ) :  If D,  and D,  are localhflat  cells in Sn of dimensions 
m, and m2 , respectively, and i f  D ,  n D,  = aD, n aD, is a k-cell which 
is locally f la t  in aD, and aD, , then D ,  u D,  is a JEat pair.  

REMARK 3.9.1. Recall that the /3-statement was given Section 2.7 and it 
was mentioned that this statement was first investigated by Doyle [2, 31 in the 
three dimensional case and by Cantrell [7] in high dimensions and later by 
Lacher [2], Cantrell and Lacher [l ,  21, and the author [5] as well as by Cernavskii 
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and Kirby as mentioned above. In Section 2.7, counterexamples were given for 
certain p-statements. 

In  Theorem 5.3 of [Lacher, 31, an interesting equivalence to Coroll- 
ary 3.9.1 is given which is related to the work of this section. 

Before beginning the proof of Theorem 3.9.1, we establish a lemma. 
In  this lemma, we regard Zk as being Ek compactified by adding the 
point co, rBk = {x E Ek I 1 x 1 < r }  and Bk = lBk.  

Lemma 3.9.1. Let f :  Bn-' -+ Zn be an embedding which is locally $at 
except at 0 E Bn-1. If n 3 4, then f extends to an embedding of 
into Zn which is locally flat except at 0 and co. 

PROOF. Let X ,  represent the Xn-axis in E" and let 2Bn be the 
decomposition space 2Bnl(2Bn n Xn). We would like to say that since 
f 1 Bn-l - 0 is locally flat, it follows that f extends to an embedding 
of 2B". This would follow from Part (c) of Theorem 1.7.6 if we knew 
that f (Bn- l  - 0) were two-sided. For n 3 5 ,  this result is a corollary 
of [Rushing, 61. Since this fact is quite easy to believe, we will not 
include a proof here. (People who have read the preceding part of 
this book are well-prepared to read [Rushing, 61.) 

It is sufficient to find an embedding g :  Zn-l -+ Zn, locally flat except 
at 0 and 00, which agrees with f on some neighborhood of 0, say rBn-l, 
r > 0. This follows since there are homeomorphisms h, , h,: Zn -+ Z", 
h, taking g(Bn-1) to g(rBn-l) = f ( rBn- l )  and h, taking f (rBn-l) to 
f (Bn-l), which means thatf(Bn-l) C h,h, g(Zn- l )  and f may be extended 
as required. 

We now will show that we may assume thatf(8EP-l) =f(Sn-,) = 

Sn-,. There is an arc A Cf(Bn- l )  (the image of a radius) from f ( 0 )  
to a point b ~ f ( a B " - l ) ,  which is locally flat modf(O), hence flat by 
Corollary 3.4.1. Then, there exists a map s: Zn 3 Zn which is the 
identity on f(aBn-l), a homeomorphism of f  A,  and shrinks A to b. 
Then sf(Bn-') is an ( n  - 1)-cell with boundary f (aBn- l )  which is 
locally flat except at the point b in its boundary. By Corollary 3.4.2, 
this cell is flat. Therefore f (aBn- l )  is unknotted in Zn, so a space 
hor.ieomorphism takes it onto Sn-,. Furthermore, we can assume 
f ( 0 )  = 0. 

Let j :  Zn-l + 2Bn - aBn-' be a map satisfying 

(a) j = 1 in a neighborhood of 0, 

(c) j I (Zn-l - (0, 00)) is an embedding, and 
(d) if p is a compactified ray in Zn-l beginning at 0, thenj(p) lies 

(b) A.0) = 0, 
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in the plane P determined by X, and p .  Furthermore, p winds once 
around aBn-l as in Fig. 3.9.1. In  particular, we require that j ( p )  

Figure 3.9.1 

represents” a generator of G I  

T o  insure local flatness later on, we assume that j is extended to 
N = Zn-l x [-1, I]/{O x [-1, I], m x [-I, I]}, where we identify 
x and [ x  x 01 for each x~Zln - l ,  such that j I N - {[O], [m]} is an 
embedding into 2Bn - aBn-l. Now we wish to “unwind”fi(N), rotating 
around Sn-2, so that fi(0) and fi( m) no longer coincide; then 2 - l  will 
be flatly embedded except at 0 and 00 and will contain a neighborhood 
off(0) inf(Bn-’). 

There is a natural homeomorphism of Int Bn-l x S1 onto Zn - Sn-2 
taking 0 x S1 onto the compactified Xn-axis and Int Bn-’ x 0 onto 
Int Bn-l (here S1 is [0, 2771 with 0 = 277). Identifying Zn - Snp2 
with Int Bn-1 x S1 in this way, let p , :  Zn - Snm2 ---f Int Bn-l and 
p 2 : Zn - Sn-2 + S1 be the projections. Let 4: El + S1 be the universal 
covering, where q(x) = x mod 277. (For discussions of the elementary 
properties of covering spaces used here, see Section 3.3 of [Singer 
and Thorpe, I ]  and Section 16 of Chapter I11 of [Hu, 11.) Since N is 



140 3. Flattening, Unknotting, and Taming Special Embeddings 

simply connected, the map p,f i :  N --+ S1 lifts to a unique map A: N + El 
satisfying qA = p z f i  and A(0) = 0 (see Theorem 16.2 of Chapter I11 
of [Hu, 13). In  effect, A assigns to each point in N a "winding number'' 
around Sn-,. 

We now show that A ( o 3 )  f 0. Let p be a compactified ray in Zn-l 
as above, so p is an arc with end-points 0 and 00. Recalling that 

sincej(p) represents a generator of H1(2Bn - Sn-2 ). By excision on the 

(i = 1 ,  2), and hence the inclusionf(28") - Sn-, C Cn - Snp2 induces 
an isomorphism of first homology groups. Thus, f i (p )  also represents 
a generator of Hl(Zn - Sn-,). Finally, p,: Cn - Sn-, + S1 is a homotopy 
equivalence, so p2fj(p)  represents a generator of Hl(S1). Thus, A( CQ) = 
&2T. 

To unwind the map fi, let a: El --+ (-T, T )  be a homeomorphism 
which is the identity on ( - ~ / 2 ,  n/2) and define G: N -+ Zn - Sn-, = 

Int Bn-l x S1 by G(z) = ( p 1 f i ( z ) ,  qorA(a)). The  verification that G is 
an embedding is routine, noting that A(0) # A(cQ). If I E Bn-l is 
sufficiently close to 0, then p, f i ( z )  = p l f ( z )  and qah(z) = $ ( I )  = 

p, f i ( z )  = pzf(z) .  Thus, g = G 1 2n-l  agrees with f near 0 and is locally 
flat off 0, 00 E Zn-l, completing the proof. 

f ( a ~ n - 1 )  = ~ n - 2 ,  f j ( p )  represents a generator of ~ , ( f ( 2 B n )  - Sn-2 1, 

pair (Zn,f(2Bn)), we see that Hi(Zn - Snv2 , f (28") - Sn-2 ) = 0, 

Proof of Theorem 3.9.1. We will break the proof into two parts. 
In  Part I ,  we will show that it suffices to prove Theorem 3.9.1 in the 
special case that Mn-l = Sn-l and Nn = Sn (or En) and then in 
Part 2, we will establish that special case. 

Part 1. Since C* is tame in M ,  it lies on a locally flat arc J* in M .  
Then, it follows from Theorem 3.4.1 that J* lies in the interior of 
an (n - I)-ball B* in M for which there is a homeomorphism 
k: (B*, J* )  - (BF-', B1). Also, sincef(C*) is tame, it lies on a locally 
flat arc J' which lies in a set U in N for which there is a homeomorphism 

There exists a closed neighbxhood N of C* in J* such that f ( N )  C U. 
h,fk-l I k-'(N - C*) is locally flat by transitivity of local flatness, 
hence locally tame. Then, by applying Theorem 3.8.1, we conclude that 
h,fk-l I k-l(N) is tame. Thus, f( J*)  is locally flat everywhere. We may 
assume that f(B*) is contained in a set Y in N for which there is a 
homeomorphism hV: ( V , f (  J*) , fk- l (O))  - (En, B', 0). 

Let s denote a map of En which shrinks B1 to 0, which is a homeo- 
morphism from En - B1 to En - 0 and which is the identity on a 
neighborhood of hyf(aB*). Let g be a map of Bt-' which shrinks B1 

h,: ( U ,  J ' )  - (En,  B1). 



3.9. Nonlocally Flat Points of a Codimension O n e  Submanifold 141 

to 0, which is a homeomorphism from Bg-' - B1 to Bg-' - 0, and which 
is the identity on a neighborhood of aBt-l. Then, hVfk-lg-l: Bg-' -+ 

En C Zn is an embedding which is locally flat except at 0 E Bt-' (see 
Fig. 3.9.2). We apply Lemma 3.9.1 to extend hVfk-'g-l to an embedding 

f 

\k 

Figure 3.9.2 

F': Zn-l --+ Zn which is locally flat except at 0 and co. Define F :  Zn-l -+ Zn 
by piecing together hvfk  I B;-' and s-lF' I Cl(Z%-l - BF-'). F is locally 
flat except at k(C*) u 00. But k(C*) u 00 is a subset of a tame Cantor 
set in D - 1  whose image is tame in Zn. Hence, if the theorem held 
for Mn-l = Sn-l, we would have that F is locally flat from which it 
would follow that f is Iocally flat. 

Part 2 (Notation). Let E be a subset of the standard Cantor set C 
in [-1, 11 gotten by deleting middle thirds, and suppose - 1 E E and 
1 E E. Let D = {d,  , d, , ...} be a countable dense subset in the com- 
plement of the Cantor set C in [-I ,  I]. Let [-I, I ]  be identified 
with the subset 

1 = {(x1 , ..., xn)  E 9 - l  C En I x:-~ + xn2 = 1, 

xn-l 3 0, x1 = x2 = ... = xn-2 = 0) 

by the identification t f--) (0, 0, ..., (1 - t2)1/2,  t) .  Then, E and C can be 
thought of as subsets of J .  Let A be an annulus pinched at E,  that is 

A p - 1  x [-1, l]/[(x, t )  = (x, 0) if x E E, -1  < t < 11. 
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Let SYP2 = {(xl, ..., xn) E Sn-l I x, = t}  and Zt = SYp2 x 4 in A. 
Also, let All2 = {(x, s) E A,  I 0 \< s < Q}. (See Fig. 3.9.3.) (Strictly 
speaking, we regard A as a nice subset of En as indicated in Fig. 3.9.3 
rather than the decomposition space given.) 

n=3 

A 

Figure 3.9.3 

Preliminaries to Proof. By the Jordan-Brouwer separation theorem, 
f(Sn-l> separates En into a bounded open set 2 “inside”f(Sn-l) and 
an unbounded set “outside”. Since C* is tame in Sn--l, there is a 
homeomorphism of Sn-l taking C* onto C, so we assume C* = C and 
E* = E. Since f I ( P - 1  - E )  is locally flat and since f(Sn-l - E) is 
two-sided in En by the Jordan-Brouwer separation theorem (or, more 
simply, [Rushing, 6]), it follows from Theorem 1.7.6, Part (c), that 
f may be considered to embed all of the pinched annulus A into En 
withf(Sn-l x 1) in 2. 

Since f I J - E is locally flat andf(E)  is tame, we can conclude from 
Theorem 3.8.1 that f(/) is locally flat in En by the method used in 
Part 1. By the same reasoning, L = f ( J  x 9) is locally flat. Denote 
the points of E” lying on L by t ,  , t E [-1, I]. 

The  idea of the proof is to find a map K: En - En 
such that K is a homeomorphism outsidef(Sn-l x i), is the identity 
outside f (Sn-l), and collapses f (2P- l  x &) to L, taking f(Z,) to t ,  

Idea of Proof. 



3.9. Nonlocally Flat Points of a Codimension One Submanifold 143 

(see Step D below). This “fills up” 2 which is then shown to be an 
n-cell (see Step E below). One then notices that the same thing could be 
done on the other side off (Sn-l) in Sn. Thus, by Exercise 1.8.4, f is 
flat (hence locally flat) as desired. 

Steps of Proof. 
A. Z is homeomorphic to En. 
B. “How to pull the cloth together.” Given E > 0, there exists a 

homeomorphism G: En + En for which 
(1) G = identity outsidef(Sn-l), 
(2) Gf(Sn-l x *)CN,(L).  
C. “How to take a stitch.” For any t E (-1, 1) - E and hence for 

any t E D, there exists a map H :  En --w En which satisfies 
(1) Hf(C,) = t L ,  

(2) H = identity outside f(Sn-l), 
(3) H is a homeomorphism outside f(Sn-l x *) and on a neigh- 

[It is implied by (3) that Hf is a locally flat embedding of 

D. “How to sew.’’ There exists a continuous map K :  En -P En 

(1) K = identity outside f ( S n - l ) ,  
(2) K is a homeomorphism outside f (Sn-l x *), 
(3) Kf(2,) = t L  for all t ~ [ - l ,  11. 
E. f I Sn-l extends to an embedding f‘ of Bn into E”. 

PROOF OF A. 

borhood off(Sn-l x * - Zt). 

(Sn-l x *) - E - CJ. 

which satisfies 

Since f ( J )  is flat, we may shrink it to a point p by a map 
g :  En + En, where g is a homeomorphism off f (1). Then gf(Sn-l)  is an 
(n - 1)-sphere which is locally flat except at p .  By Theorem 3.3.1, 
gf(Sn-’) bounds an n-cell. In  particular, the interior g ( 2 )  is homeo- 
morphic to En and so 2 is also homeomorphic to En. 

Let s be the map which shrinks L to a point p and is a 
homeomorphism elsewhere, Then, sf(Sn-l x *) is an (n - 1)-sphere 
with only one nonlocally flat point p .  Thus, it bounds an n-cell by 
Theorem 3.3.1. Hence, each point xeSf(Sn-1 x i) is joined by a 
ray rz to p .  Under s-1 (not defined at p ) ,  these rays are taken to rays 
called s-lr,, which may not converge to any point of L, but do get 
arbitrarily close to L. By using these rays, we may slide f (Sn- l  x *) 
into N,(L), fixing L. The result of this slide is called G. 

The  set ST2 x (0, &] in A may be identified with 
Bn-l - 0 (see Fig. 3.9.4). Then, f (Bn- l  - 0 ) = f(S?-’ x (0, +I) lies 

PROOF OF B. 

PROOF OF C. 
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t- 

f ( S " - ' x h  

f (S" 

. f  (J) 

+L f" 

- L  

w 
Figure 3.9.4 

in 2 as a closed, locally flat submanifold. By adding co to Z = En, 
we obtain Zn.  Lettingf(0) = CQ, f embeds Bn-l and is locally flat on 

- 0. By Lemma 3.9.1, f extends to an embeddingf*: Zn-l - Z", 
locally flat on Z"-l - (0, a}. We have f*(Z"-l - 0) C Z .  We can 
ensure that 

f*(/y-1 - 0) n j ( A l l z )  = f*(B"-' - 0)  = f(s:-2 x (0, $1) 
by pushingf*(Zn-l - I?"-') off f(A,/,) using the collaring of f(S"-l). 

Now let a be the shortest arc in Zn-l joining (f*)-' (t,) to co. Then, 
f * ( a )  is locally flat modf(co), hence flat by Corollary 3.4.2 (or by 
combining Theorem 3.2.1 and the corollary to Theorem 3.6.1). Let 
s: 2 -+ 2 be a map which shrinksf*(a) to t ,  , is the identity onf(A,/,), 
and is a homeomorphism off f *(a). Then, f(S"-, x Q) = f(Z,) bounds 
D = sf*(Z"-' - Int B"-l) which is an (n - 1)-cell which is locally 
flat except at t L ,  and whose interior misses f(All2). By applying 
[Rushing, 61 or by using the Jordan-Brouwer separation theorem and 
Part (c) of Theorem 1.7.6, one can obtain a bicollar which is pinched 
at tL of a slightly larger (n - 1)-cell, I t  is now easy to construct H 
by shrinking D to t ,  with a map which is the identity outside the pinched 
bicollar. 

A rough idea of the proof is first to pull the cloth 
close together, then take a stitch, then pull the cloth closer together, 
then take another stitch, etc. 

More precisely, the idea of the proof is to deform f(A,/,) onto 2 
by collapsing f(Sn-l x 3) onto L, taking f(Z,) to t ,  for all t. First, 

PROOF OF D. 
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using B, we movef(Sn-l x i) close to L. Then, using C, we pinch 
f(Z,) to t ,  for t = dl . This splits the embedding into two parts, the 
part between - 1 and dl , and the part between dl and 1. We proceed 
in the same way with each part. Thus, each is pulled closer and 
closer to t ,  and one by one each f(Z,) for t E D is taken to t ,  . The  
limit of this process will be K.  

Recall that in B, we were able to movef(S"-l x i) toward L, but 
in a nonconvergent manner; that is, f(Z,) would not go to t , ,  but 
would oscillate up and down L. We now prevent this by splitting the 
embedding into smaller and smaller parts and thereby restrict the 
motion of f(Z,) to its appropriate part. This forces f(Z,) to converge 
to t L  . 

For a given integer i > 0, let el , ..., ei-l be a reordering of dl , ..., di-l 
so that ei < ei+, for j = 1, ..., i - 2. Then, 1-1, 11 is subdivided into 
intervals Il  = [-1, el], I2 = [el , e,], ..., = [e+, , eiPl] and Ii = 

, 13. Let I j L  = {t ,  E L  I t E I j } .  Let mi: [-1, 13 + [0, &] be a con- 
tinuous map for which &(-I) = a i ( l )  = ai(ej) = &, f o r j  = 1, ..., i - 1, 
and ai(t) # 9 otherwise. Also, let ai(t) ai-l(t) for all i and t E [ - 1, 11. 
Let = ai I Ii . Let 

A(crj') = { (x ,  s) E A 1 x,  E l i  , LYii(X,) ,< s < +}, 

where x, is the nth coordinate of x E Sn-l. Then each A(aji)  looks 
like a cylinder Sn-2 x I fattened except at the top and bottom and at 
points of C [except that A(aOi) has its bottom pinched and A(a,i) its 
top pinched to a point], see Fig. 3.9.5. Furthermore, if the top and 

Figure 3.9.5 
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bottom are pinched to points, then the resulting A*(aji), is homeomorphic 
to A', where A' is constructed as A was, but using a different subset E 
of the standard Cantor set. Finally, let A(d)  be the union of the A(aji) ,  
j = I ,  ..., i and let A*(&) be the union of the A*(aji) ,  j = 1 ,  ..., i. 

We will construct inductively a sequence of continuous maps {K,}, 
K,: E n  + En, see Fig. 3.9.6, satisfying 

(1,) Ki = identity onf(Sn-l) for i 2 1, 
(2,) Ki = Kivl onf(A,/, - A(ai)), 
(3,) K,f(Z,) = t L  for t = 4 ,  ..., di , 
(4,) K,f(Z,) C N1/,(l iL) if t E Ii , j = 1, ..., i, 
(5J Ki is a homeomorphism on a neighborhood off(All2 - uj=lZd,). 

- L  

Figure 3.9.6 

Start the induction with KO = identity. 
Assume by induction that K,-, has been constructed. Then, f embeds 

A(ai) and K+,f embeds A*(ai). We can apply B to each A*(aji) 
with E = l / i  and f = K,-J to obtain Gi , where G,K,-, will satisfy 

Next, we apply C to just the A*(ol,i) which contains d,, letting 
the f of C be G,K,-,f and t = di . We obtain a map Hi, and K, = 

HiG,Ki-, will clearly satisfy ( li)-(S,). 

( I t ) ,  (&), (4,)T and (5,)- 
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Let K = lim Ki . If we choose the aji so that lim,,,, ai(t) = 8 for 
all t ,  then K exists and is a homeomorphism outside f ( S n - l  x 2)  

because in a neighborhood of any such point, Ki = Ki+l for i large 
enough [see (2J], By (3i), Kf(Z,) = tL for t~ D. Furthermore, K 
is continuous on f (Sn- l  x 8) = u t Z ,  by (4J. Since D is dense, 
Kf(Z,) = t L  for all t E [ -1 ,  11. 

PROOF OF E. Let 

F: B” - ( J  x 4) +A,,, - (Sn-l x 2) 

be the obvious homeomorphism which expands radially away from 
J x &.  (Recall that we are regarding A1/2  as a nice subset of En as 
indicated in Fig. 3.9.3.) Define f’ by 

KfF(x) if x E Bn - ( J  x i), 
f = !f (x) if 3 ~ ~ 1 x 4 .  

Since F = identity on Sn-1, f’ is an extension off. It is easy to see 
that f’ is well defined by using (3) of D. Also, it is easily verified that 
f’ is an embedding and this completes the proof. 

Show that a closed, locally flat embedding f of S”l x El 
into En, n 3 5 ,  unknots; that is, show that there is a homeomorphism h of En 
onto itself such that hf = identity. 

EXERCISE 3.9.1. 

EXERCISE 3.9.2. Can the requirement that C* be tame in M be eliminated 
from Theorem 3.9.1 ? (The author does not know the answer to this question.) 
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Engulfing and Applications 

4.1. INTRODUCTION 

The concept of engulfing has been one of the most useful discoveries 
to topological embeddings (as well as to piecewise linear topology) 
during the past decade. It is impossible to state a reasonable engulfing 
theorem that applies to all situations; thus, it is important to understand 
the various engulfing methods. (A similar statement was made concerning 
general position in Chapter 1.) In  this chapter, we will first consider 
Stallinga’ engulfing and then use this type of engulfing to  prove the 
(weak) generalized Poincare theorem, to prove the hauptwermutung for 
open cells, and to flatten topological sphere pairs and cell pairs. Next, 
we will discuss Zeeman’s engulfing and its relationship to Stallings’ 
engulfing. Zeeman’s engulfing will be employed to give a proof of 
Irwin’s embedding theorem. We will use both Stallings’ and Zeeman’s 
engulfing (although this is not necessary by results of Section 4.6) to 
show that McMillan’s cellularity criterion implies cellular. As an applic- 
ation of this result on the cellularity criterion, we will show that locally 
nice codimension-one spheres in Sn are weakly flat. Radial engulfing, 
which is a modification formulated by Connell and Bing of Stallings’ 
engulfing, is developed next. Radial engulfing is applied in establishing 
the PL  approximation of stable homeomorphisms of En.  We also develop 
topological engulfing and use it to prove a topological H-cobordism 
theorem and to prove the topological PoincarC theorem. Finally, we 
develop infinite engulfing. (An important application of infinite engulfing 
will be given in Section 5.2.) 

148 
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4.2. STALLINGS’ ENGULFING 

Stallings’ engulfing theorem [Stallings, 31 says that an open subset of a 
piecewise linear manifold can expand to engulf, like a piecewise linear 
amoeba, any given subpolyhedron, provided that certain dimension, 
connectivity, and finiteness conditions are met. Let M n  be a connected 
PL n-manifold without boundary, U an open set in Mn, K a (possibly 
infinite) complex in M n  of dimension at most n - 3, and L a (possibly 
infinite) subcomplex of K in U such that Cl(l K 1 - 1 L I) is the poly- 
hedron of a finite subcomplex R of K.  The  idea of the proof is to let 
U act as an amoeba and send out feelers to engulf the vertices of R one 
at a time, all the while keeping L covered. Once a simplex is engulfed, 
it is added to L so that none of the previously considered simplexes are 
uncovered. After the vertices of R are covered, the engulfing is extended 
to the 1-simplexes of R, one at a time. In  this case it is not so much like 
sending out feelers, but more like sliding the new U sideways along a 
singular disk bounded by the 1-simplex to be engulfed and an arc in the 
extended U joining the ends of the simplex. This process is extended to 
all simplexes of R. 

As more and more of R is engulfed, care must be taken not to uncover 
any of L or any of the essential part of R already covered. Fig. 4.2.1 
illustrates what must be avoided. 

Figure 4.2.1 

As simplexes of higher and higher dimensions are engulfed, the task 
becomes increasingly difficult since shadows leading out to singularities 
must be identified and engulfed to prevent uncovering something that 
has already been considered and added to L.  In  fact, if R is (n - 3) 
dimensional, when U is finally required to reach out and engulf 
an (n - 3)-dimensional simplex of R, the amoeba may be required to 
regurgitate some of the (n - 2)-dimensional path it has previously 
eaten so as to be able to hold L and eat its way forward.+ 

+ The preceding discussion follows [Bing, 111. 
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A pair ( M ,  U )  is p-connected if rri(M, U )  = 0 for all i < p .  It 
follows that if the pair ( M ,  U )  is p-connected, and d is an i-simplex, 
i < p ,  then any map f taking (d x 0, Bd d x 0) into ( M ,  U )  can be 
extended to a map 3 taking (d x [0, 11, (Bd d x [0, I]) U (d x 1)) 
into ( M ,  U).  

Stallings' Engulfing Theorem 4.2.1. Let M n  be a PL n-manifold 
without boundary, U an open set in Mn,  K a(possibly infinite) complex in M n  
of dimension at most n - 3 such that 1 K I is closed in Mn,  andL a (possibly 
injinite) subcomplex of K in U such that C1( 1 K 1 - 1 L I )  is the polyhedron 
of ajinite r-subcomptex R of K (see Fig. 4.2.2). Let (Mn,  U )  be r-connected. 
Then, there is a compact set E C M n  and an ambient isotopy e ,  of M n  such 
that 1 K 1 C el( U )  and 

e ,  I (M" - E )  u I L I = 1 I (M" - E )  u I L I. 

PROOF. The proof will be by induction on Y. Certainly the theorem is 
true if r = -1. In  order not to start the induction with a completely 
trivial case, let us prove the theorem for r = 0. In this case R consists 
of a bunch of vertices. Clearly, it will suffice to establish the case R is 
one vertex ZJ since then we could engulf any number of vertices one at a 
time each time adding the previously engulfed ones to L. Since ( M ,  U )  
is 0-connected there is a map g:  [0, I ]  --+ M such that g(0) = ZJ and 
g(1) E U. By simplicia1 approximation and general position, we may 
assume that g is P L  and that g([O, I]) n L = 8. Let A?! be an open subset 
of M containing g([O, 11). Then, since g([O, 11) L g(1) the desired 
conclusion follows from Exercise 1.6.12 by substituting (A?!, g([O, I]), 
g( I),  U n &') for ( M ,  P,  Q, U )  and extending the resulting isotopy to 
M by the identity. 

We now inductively assume that the theorem is true for r = 
1, 2,  ..., i - 1 and show it true for Y = i < n - 3.  It will suffice to estab- 
lish the case when R is one i-simplex, d, (that is, I K I = 1 L I u d) 
since by induction we could engulf the ( i  - 1)-skeleton of R and then 
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engulf any number of i-simplexes one at a time, each time adding to L 
the part of R previously engulfed. 

Identify each point x of d with the pair (x, 0), see Fig. 4.2.3. Then, 

M 

Figure 4.2.3 

since the inclusion takes ( A  x 0, Bd d x 0) into ( M ,  U ) ,  it can be 
extended to a map g taking (d x [0, 13, (Bd d x [0, I]) u ( A  x 1)) 
into ( M ,  U )  by i-connectivity of ( M ,  U ) .  Extend g over I L I by the 
identity. We may assume that g is PL by the relative simplicial approxi- 
mation theorem (Theorem 1.6.11). By Part 1 of Theorem 1.6.10, we 
can assume that there are triangulations (K' ,  L'), L' subdividing L, of 
(I K I u (d x [0, l]), I L I) and M' of M such that g: K' --f M' is a 
nondegenerate simplicia1 map. By Theorem 1.6.3, there is a triangulation 
( X ,  Y )  of ( I  K I u (d x [0, I], I L I u (Bd d x [0, 11) u ( A  x l)), where 
X subdivides K',  such that X \ Y.  Clearly, g: X --f M' is also a linear 
homeomorphism on each simplex of X .  Thus, by Part 2 of Theorem 
1.6.10, we can assume that g: X + M' embeds each simplex of X and 
that dim S( g I u u T) < dim u + dim T - n for each two simplexes 

Let A, ,  ..., A, denote the simplexes of the triangulation X such that 
( J L ) U ( B d d  x [ O , I ] ) U ( ~  x l ) U A l u . . . U A , _ , ) n A i = ~ i * B d B i ,  
where A j  = vj * B j .  Let Dj  denote the part of the i-skeleton of X 
contained in I L I u (Bd A x [0, 11) u (d x 1) u A, u u A j ,  if 
i = n - 3, otherwise let Dj  be all of 

U, T E X .  

I L I u (Bd d x [0, 11) u ( A  x 1) u A,  u * a *  u A j  . 
The idea now is to engulfg(D,), which contains A u I L I = I K 1 by a 

sequence of moves which follow backwards the image under g of the 
sequence of elementary simplicial collapses obtained above. In  the case 
i < n - 3, we will in fact engulf all of g(d x [0, 11) u I L I. I n  the case 
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i = n - 3 the regurgitation discussed in the preliminary remarks of this 
section takes place. 

The  proof that we can engulf g(D,) is by induction on j .  Certainly, we 
already have g(D,) = g(1 L I U (Bd d x I) v (d x 1)) engulfed, so 
suppose that we have g(D,-l) engulfed. Let 

4 = u {S(g I 4" B)l* 
BED*-1 

Then, 

dim Zj = By2;l [dim(S( g I A j  u B)]  < max [dim A j  + dim B - n] 
BEDj-1 

< (i + 1) + (n - 3) - n = i- 2. 

Hence, by Lemma 1.6.3, there is a polyhedron A such that 
A, I (v ,  I Bd B,) v A I v, * Bd Bj , Z C A u v, * Bd B, and dim A < 
i - 1. Since g I A, is a P L  embedding, we have that 

g(Aj)  I g(vj * Bd B j )  u g(A)  L g(vj * Bd Bj) ,  

g(Z)  C g ( A )  u g(v, * Bd B,) and dim g(A)  < i - 1. Thus, by the 
(i - 1)-inductive hypothesis, we can engulf g(A) U g(D,-J staying fixed 
on g(D,-l). Now, by Exercise 1.6.12, we can engulf g(Di) staying fixed 
on g(A) ug(DiPl ) .  This completes the induction on j and so we can 
engulf g(D,), consequently A .  Hence, the induction on i = Y is also 
completed and we are through. 

Figure 4.2.4 illustrates how the incorrect procedure depicted in 
Fig. 4.2.1 is avoided if one first engulfs A.  

Figure 4.2.4 

EXERCISE 4.2.1. Give an example to show that it is necessary that I K I be 
closed in A4" in Theorem 4.2.1. (A simple such example due to Bing was 
communicated to the author by Fred Crary.) 
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4.3. T H E  GENERALIZED POINCARE THEOREM 

The  first person to conceive a proof of the PoincarC conjecture in high 
dimensions was Smale [l]. Smale not only proved that a connected, closed 
PL manifold which is a homotopy sphere is topologically a sphere in 
high dimensions, but is in fact a PL sphere. The  topological version is 
sometimes called the “weak PoincarC theorem” and is the version that 
we shall prove in this section. Our proof will be based on the generalized 
Schoenflies theorem and Stallings’ engulfing theorem. For other proofs 
refer to Corollary 4.6.1 and to Corollary 4.13.2. 

Lemma 4.3.1. Let M be a closed P L  n-manifold such that every sub- 
polyhedron of dimension at  most n/2 is contained in the interior of a PL 
n-ball in M .  Then, M is topologically homeomorphic to Sn. 

PROOF. Let T be a triangulation of M ,  let p be the greatest integer 
less than or equal to 4 2 ,  denoted [n/2], and let q = n - p - 1 < n/2. 
Let T, be the p-skeleton of T and let Tq be the dual q-skeleton (which 
is defined to be the maximal subcomplex of the first barycentric sub- 
division of T which does not intersect Tp). By hypothesis T, and Tq lie 
in the interior of PL n-balls B, and B*, respectively, in M .  

Let N ,  and N* be the simplicia1 neighborhoods of T, and Tq in the 
second barycentric subdivision of T. Then, M = N ,  u N*.  Let No be a 
regular neighborhood of Tp in Int B ,  . By the regular neighborhood 
theorem there is a PL homeomorphism h, of M such that h,(N,) = N ,  . 
Then, h,(B,) is a PL n-ball which contains N ,  in its interior. Similarly, 
we can construct a P L  n-ball h*(B*) which contains N* in its interior. 
Then, M = h,(Int B,) u h*(Int B*). The lemma now follows from an 
application of Theorem 1.8.4. (Recall that the proof of Theorem 1.8.4 
used the generalized Schoenflies theorem.) 

Weak Generalized Poincar6 Theorem 4.3.1. If Mn, n 2 5,  is a 
connected, closed PL-manifold which has the homotopy type of Sn (actually 
we only need .rri(M) = 0 for i < [n/2]), then M is (topologically) homeo- 
morphic to Sn. 

PROOF. By Lemma 4.3.1, it will suffice to show that every K-poly- 
hedron P k  in M ,  k < n/2, is contained in the interior of an n-ball in M .  
Let B n  be a n-ball in M .  Then we will engulf P with Int B by using 
Stallings’ engulfing theorem. Certainly K < [nj2] < n - 3 since 
n 2 5.  Thus, we will be through it we can show that the pair ( M ,  Int B )  
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is k-connected. In  order to do this consider the following homotopy 
sequence of the pair ( M ,  Int B), (see [Hu, 1 p. 1091): 

r,(Int B)  - r k ( M )  - r k ( M ,  Int B )  - rk-,(1nt B)  - * * a  

-, r,(Int B)  --f r,(M) - r,(M, Int B )  - ro(Int B )  - ro (M) .  

By hypothesis and the fact that Int B is contractible, the above sequence 
becomes: 

0 - 0 + r,(M, Int B )  + 0 - -, 0 -+ 0 -+ r l ( M ,  Int B )  -, 0 - 0. 

Hence, the pair ( M ,  Int B )  is k-connected as desired. 

4.4. T H E  H A U P T V E R M U T U N G  FOR O P E N  CELLS 

The  following is the main result of this section and is a slight strength- 
ening of Theorem 4 of [Stallings, 31. 

Theorem 4.4.1. If M n  is a k-connected PL n-manifold with- 
out boundary which is ( n  - k - 2)-connected at injinity where 
[n/2] < k < n - 3 and n 2 5 ,  then M n  En. 

Corollary 4.4.1 (Hauptvermutung for open cells). A n y  two open 
topological n-cells, n 2 5 ,  which are P L  manifolds are PL homeomorphic. 

The  corollary is usually stated by saying that En, n 2 5 ,  has a unique 
PL structure, however this is misleading since it is quite easy to show 
that any two triangulations of E n  are PL equivalent. Of course, the 
statement takes into account abstract triangulations, and when one 
translates it into terms of (rectilinear) triangulations he comes up with 
the hauptvermutung for open cells. The hauptvermutung for open 
n-cells, n < 3, is also known (see [Moise, I]), but is still open for n = 4. 

A manifold M is said to be k-connected at infinity, if for every 
compact C C M ,  there is a compact D, where C C D C M ,  such that 
M - D is k-connected; that is ri(M - D )  = 0 for all i < k. 

Our first lemma is a special case of the regular-neighborhood annulus 
theorem proved in [Hudson and Zeeman, I]. We will actually only use 
the corollary to Lemma 4.4.1. Stallings in [3] observed that the corollary 
also follows easily from results of either [Newman, I] or [Gugenheim, I]. 
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Lemma 4.4.1 (Hudson and Zeeman). Let N and N ,  be regular 
neighborhoods of the polyhedron P which lies in the interior of the P L  
manifold M. If Nl C Int N ,  then Cl(N - N , )  % Bd N x I .  

Let ( K ,  L) be a triangulation of ( M ,  P )  such that L is full 
in K. Let f: K + [0, I]  be the unique simplicia1 map which takes all 
of the vertices of L to 0 and all of the other vertices of K to 1. Let K’ be 
the derived subdivision of K obtained by starring each simplex a E K 
at some point of f-’(&) n Int a if f(a) = [0, I]  and arbitrarily 
otherwise. Then,f-l([O, &I) = j N(P, K‘)I and I N(P,  K’)I is a regular 
neighborhood of P in M by Part 1 of the regular neighborhood theorem 
(Theorem 1.6.4). Let K” be the derived subdivision of K’ obtained by 
starring each simplex a E K‘  at some point of f-l(+) n Int a iff (a) = 
[0, 41 and arbitrarily otherwise. As abovef-l([O, $3) = 1 N(P, K”)J is a 
regular neighborhood of P in M. 

PROOF. 

Let 
I N(P, K‘)I = f-W, 41) = N ,  , 

I “P, K”)I = f-’([O, tl) = N3 * 

and 

Then, CI(N, - N,) is PL homeomorphic to Bd N3 x I as follows. 
Let o l ,  ..., as be a listing in order of nondecreasing dimension of the 
simplexes of K meeting P but not contained in P .  The  P L  homeo- 
morphism is constructed inductively on ai n Cl(N, - N3),  which is a 
“skew” prism with walls Bd ai n CI(N, - N3) ,  top ai n Bd N ,  and 
bottom ui r\ Bd N3 . By induction the PL homeomorphism has already 
been defined on the walls, so extend it to the top, bottom and interior 
of the respective P L  cells. 

Part 2 of the regular neighborhood theorem (Theorem 1.6.4) gives a 
P L  homeomorphism h of N ,  onto N which leaves P fixed. Then, N ,  and 
h(NJ are both regular neighborhoods of P in Int N and so by Part 3 of 
the regular neighborhood theorem there is a P L  homeomorphism h’ of N 
onto itself which leaves Bd N U  P fixed such that h’h(N,) = N l .  
Hence, 

PL PL PL 
Cl(N - N,) = h’h(Cl(N, - N3)) - Cl(N, - N3) Bd N ,  x 1 Bd N x I. 

Corollary 4.4.2. Let B, C Int B, C Bz C Int B, C 

For the topological version of Corollary 4.4.2, see Exercise 3.4.3. 
Let us now digress to establish two more corollaries of Lemma 4.4.1 

which will not be used in this section, but which will be used later. 

be a sequence 
PL 

of P L  n-cells. Then, U;=, Bi = En. 
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Corollary 4.4.3. I f  M is a bounded compactLPL n-manifold and Q 
is a component of aM such that M L Q, then M rn Q x I. 

PROOF. (The author saw this proof presented by C. H. Edwards.) By 
Theorem 1.6.8, we may suppose that M C Ek for some k. Consider the 
PL n-manifold M u  (Q x I )  C Ek+l. Define X = Q x -5, Nl = Q x [0, $1 
and N = M u (Q x I ) .  Then, clearly 

N L Q x I L Nl L X ,  

so that Lemma 4.4.1 implies that 
P L  N - I n t N , w ! N x I w a N l  XI. 

But, N - Int Nl is the disjoint union of M;pdQ x [#, 13, and aNl x I 
consists of two copies of Q x I. Hence, M M Q x I .  

Analogously to the topological definition in Section 1.7, we say that 
aM is PL-collared in M if there exists a P L  homeomorphism h of 
aM x I into M such that h(x, 0) = x for x E aM. We call h( aM x I )  a 
PL-collar of aM in M. The  next corollary follows directly from the 
preceding corollary. 

Corollary 4.4.4. If M is a bounded compact PL manifold and N is a 

REMARK 4.4.1. For a proof of Corollary 4.4.4 by different techniques, see 

Lemma 4.4.2. Let Mn be a k-connected PL n-manifold without 
boundary and let Pk be a k-polyhedron in M where k < n - 3. Then, P is 
contained in the interior of a PL n-cell in M. 

Lemma 4A.2 follows from an application of Stallings' engulfing 
theorem (Theorem 4.2.1) as in the proof of Theorem 4.3.1. 

regular neighborhood of aM in M, then N is a PL-collar of aM in M.  

Theorem 1.7.7 and Remark 1.7.3. 

Proposition 4.4.1. Let Mn be a k-connected PL n-manifold which is 
(n - k - 2)-connected at injnity where [n/2] < k < n - 3. Then, for 
every compact C C M there is a compact D,  where C C D C M ,  such that 
(M, M - D )  is ( n  - k - 1)-connected. 

Since M is ( n  - k - 2)-connected at infinity, there is a 
compact D such that C C D C M and M - D is (n  - k - 2)- 
connected. Consider the following exact sequence of the pair ( M ,  M - 0): 

PROOF. 

r n - k - 1 ( M )  --t rn-k-l(M, M - D) -+ r n - k - Z ( M  - D) 
--* T ~ - * - ~ ( M )  -+ + rO(M - D) -+ ro(M) -P rO(M, M - D). 
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Notice that rr,(M) = 0 for i < n - K - 1 since K 2 n - k - 1 
follows from the hypothesis that [n/2] < k. Thus, the above sequence 
becomes 

0 + ~,,-k-l(M, M - D )  -+ 0 -+ 0 -+ -+ O-+O-+n,(M, M -  D). 

It follows that (My  M - D) is (n  - k - 1)-connected as desired. 

Lemma 4.4.3. Let Mn be a k-connected PL n-manifold without bound- 
ary which is (n - k - 2)-connected a t  infinity where [n/2] < k < n - 3 
and n > 5. Let T be a combinatorial triangulation of M and let Tn-k-l 
denote its (n - K - 1)-skeleton. Then, for every compact set C C M there 
is a compact set El C M and a PL homeomorphism h,: M + M such that 

C C El C M and Tn-k-I C h,(M - C )  and 

h, I ( M  - El)  = 1 I ( M  - El). 

PROOF. By Proposition 4.4.1 there is a compact D with C C D C M 
and ( M ,  M - D) (n - k - 1)-connected. Thus, Lemma 4.4.3 follows 
immediately from Stallings' engulfing theorem (Theorem 4.2.1) by 
substitution of M - D for U and Tn-k-l for K. 

Proof of Theorem 4.4.1. We first observe that it will suffice to 
show that if C is a compact subset of M ,  then C C Int F C M ,  where F 
is a P L  n-cell. Let T be a combinatorial triangulation of M and let 
{vi}& enumerate the vertices of T. Let B, = St(v, T). Inductively, 
suppose that a PL n-ball Bj-l C M is defined and let Bj be a P L  n-ball 
which contains the compact set B,-l u u:=l St(v, , T). Clearly, 
B,  C Int B, C Int B, C ... is a sequence of P L  n-balls such that 
(J;=l Bi = M .  I t  then follows from Corollary 4.4.2 that M n  2 En. 

We now will show that if C is a compact subset of M ,  then C C F C M 
where F is a PL n-cell. Let Tn-k--l denote the (n - K - I)-skeleton of T 
and apply Lemma 4.4.3. Let 

K = Tn-k--l U {a E T I (I C M - El}. 

Then, K C hl(M - C). 
Let T k  denote the finite complex which is dual to K. Since k < n - 3, 

it follows from Lemma 4.4.2 that Tk is contained in the interior of a PL 
n-cell A C M. Since K C h,(M - C) and Tk C Int A,  it is easy to con- 
struct a PL homeomorphism h,: M -++ M such that h,(Int A )  3 h,(C). 
Thus, hllh,(Int A )  3 C and so F = hylh,(A) is the desired PL n-cell 
containing C. 
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4.5. FLATTENING TOPOLOGICAL SPHERE PAIRS 

A N D  CELL PAIRS 

Theorem 1.8.2 (the generalized Schoenflies theorem), said that a 
locally flat ( n  - 1)-sphere in Sn is flat. In  fact, Theorem 3.3.1 said 
that if the ( n  - 1)-sphere is locally flat except possibly at one point and 
n 2 4, then it is flat. I t  is natural to wonder whether an analogous 
statement is true for spheres of codimensions other than one. In  this 
section, we shall establish the following result which was first proved in 
[Stallings, 21. 

Flattening Theorem 4.5.1 (Stallings). (a) A k-sphere in Sn which is 
locally j lat  except possibly at one point is $at i f  k < n - 3.  (b) A locally j lat  
(n  - 2)-sphere in Sn, n 3 5 is flat if its complement has the homotopy 
type of S1. 

We shall also establish a related result (Theorem 4.5.2) concerning 
the unknotting of cell pairs which was proved in [Glaser and Price, 11. 
If the k-cell Dk is properly contained in the n-cell Dn, that is, boundary 
contained in boundary and interior in interior, then (Dn, Dk) is said to be 
a cell pair. A cell pair (Dn, Dk) is said to be flat if it is homeomorphic 
to (In, I k ) .  

Unknotting Cell Pairs Theorem 4.5.2 (Glaser and Price). (a) A 
cell pair (Dn, Dk), n 2 5 ,  k # n - 2,  which is locally $at except possibly 
a t  one point of Int(Dk) is j la t .  (b) A locally flat cell pair (D”, Dn--2), 
n 3 6, is j lat  i f  Dn - Dn-2 and Bd D” - Bd DnP2 each have the 
homotopy type of S1. (c) A cell pair (Dn, Dn--l), n 3 4, which is locally 
j lat  except possibly at one point of Int(Dn-l) is f lat .  

The idea of the proof of Theorem 4.5.1 is similar to the proof given in 
Section 4.4, although more delicate. In  particular, a point is removed 
from the k-sphere in Sn so that a closed k-string X k  in En results. The  
objective now is to express (En,  X k )  as the monotone union of cell pairs 
so that by the proof of Theorem 3.4.4, Xk is flat in En and its one-point 
compactification (the original k-sphere) is flat in Sn. T o  show that 
(En,  X k )  is the monotone union of cell pairs, it suffices to show that if C 
is a compact set in En, then there is an open set U such that C C U C En 
and ( U ,  U n Xk) is homeomorphic to (En, Ek).  In  order to obtain such a 
U, a flattening neighborhood W in En of an arbitrary point of X k  is 
taken and by a “horizontal” engulfing process is stretched over C n X k  
and then by a “vertical” engulfing process is stretched over the rest of C. 
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The  horizontal engulfing becomes trivial by applying Theorem 3.4.4. 
The meat of the proof is the vertical engulfing. I t  will be necessary to use 
some algebraic topology to eastablish the required connectivity. Here 
again, however, our work is made simpler than Stallings’ original proof 
by applying Theorem 3.4.4. (These uses of Theorem 3.4.4 evolved from 
the observation of Price that Theorem 3.4.4 could be used to obtain a 
simple proof of Corollary 3.5 of [Stallings, 21.) 

Lemma 4.5.1 (Horizontal engulfing). Let X be a closed, locally flat 
string in En, let B be a compact set in En, and let W be aflattening neigh- 
borhood in En of an arbitrary point x of X .  Then, there is a homeomorphism 
h of (En, X )  onto itself such that B n X C h( W) .  

By Theorem 3.4.4, there is an open set U in En containing 
X such that there is a homeomorphism g: ( U ,  X )  - (En, Ek). Let W’ 
be a flattening n-cell neighborhood of x contained in W n U. It is easy 
to get a homeomorphism f: (En, Ek) - (En, Ek) which is the identity 
outside of a compact set such that g(B  n X )  C f ( g ( W ’ ) ) .  Then, 
h = g-lfg:( U, X )  - ( U ,  X )  can be extended to En by the identity and 
this is the desired homeomorphism. 

We next state Stallings’ engulfing theorem in the form which will be 
needed to do the vertical engulfing. 

PROOF. 

Lemma 4.5.2 (Modified Stallings’ engulfing). Let M n  be a PL 
n-manifold without boundary, let C C U C M ,  where C is closed in M and 
U is open in M ,  let P be a polyhedron in M ,  such that the dimension of 
P - C isp ,  where p < n - 3. Let ( M  - C, U - C )  bep-connected and 
let P - U be compact. Then, there is a compact E C M - C, and there 
is a P L  homeomorphism h: M -  M such that P C h(U) and 
h I(M - E )  = 1 I(M - E )  (see Fig. 4.5.1). 

Figure 4.5.1 
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PROOF. Apply Theorem 4.2.1 to Ml = M - C,  U,  = U - C and 
Kl which is some triangulation of P - C. That theorem says there 
exists a compact E C M ,  and a PL homeomorphism h,: Ml - Ml 
(which can be realized be an ambient isotopy) such that P, C h,( U,) and 
h, I(M, - E )  = 1 I(M, - E ) .  Let h: M -  M be the extension of h, 
by the identity over M - E. Then, h clearly satisfies the lemma. 

A closed string X C En is said to be unraveled at infinity if for each 
compact C C E n  there is a compact D, where C C D C En, such that 
rri(En - X ,  En - ( X  u D ) )  = 0 for i = 0, 1, 2. 

The next two lemmas contain the connectivity necessary to do the 
vertical engulfing. 

Lemma 4.5.3 (Connectivity in codimensions greater than two). 
Let Xk C E n ,  k < n - 3,  be a closed, locally flat k-string. Let V C En be 
such that ( V ,  V n X )  w (En,  Ek). Then, rri(En - X ,  V - X )  = 0 for 
all i and X is unraveled at infinity. 

Lemma 4.5.4 (Connectivity in codimension two). Let Xn-2 C En 
be a closed, locallyjlat ( n  - 2)-string such that En - X has the homotopy 
type of S. Let V C En be such that ( V ,  V n X )  M (En, En-2). Then, 
rri(En - X ,  J/ - X )  = 0 for all i. If, furthermore, X U 00 is locally 
flat in the one-point compactifcation of the pair (En ,  X ) ,  then X i s  unraveled 
at infinity. 

Before proving the above two lemmas, a couple of preliminary 
propositions will be established. 

Proposition 4.5.1. Let Xk C En, k < n - 3 ,  be a closed, locally 
flat k-string and for r 2 0 define B(r)  = (x E En I 1 1  x 1 1  < r} .  Then, 
n,(En - ( X  u B(r)))  = 0 for all r 3 0. 

Let 1 be a loop in En - ( X  u B(r) ) .  Consider 1 to be a map 
of Bd d into En - ( X  u B(r) )  where A is a 2-simplex. Since En - B(r)  
is simply connected, 1 can be extended to a map l of A into En - B(r) .  
By Theorem 3.4.4, there is an open set U in En containing X and a 
homeomorphism h:  ( U ,  U n X )  - (En,  Ek).  Certainly we can assume 
that U n l(Bd d) = 0. Then Z-l(U) is an open subset of Int d and 
as such is a PL manifold. Also En - h(B(r ) )  is a PL manifold which 
contains Ek - h(B(r ) )  as a PL submanifold. We have the map 

PROOF. 

hl I I-,( U ) :  I-,( U )  -+ E" - h(B(r)). 

By the techniques of Section 1.6 (Parts C and D), hl I I-,( U )  may be 
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replaced by a map f: Z-l( U )  + En - B(r)  which is PL and in general 
position with respect to Ek - B(Y) and is such that 3: A + En defined 
by 3 ld  - kl(U) = z / A  - k l ( U )  and jI Z-l(U) = h-lf i s the  
desired extension of I which takes A onto En - ( X  u B(r)) .  

Proposition 4.5.2. Let Z C Sn be a k-sphere and let B be a closed 
subset of Sn such that Z - B # 0. Then, the maps 

Hi(Sn - (Z u B)) + Hi(S" - Z) 

are onto. 

PROOF. By the Alexander duality theorem (see p. 177 of 
[Greenberg, 13 or p. 296 of [Spanier, I]), it will suffice to show 
that Hj(Z  u B )  + H j ( Z )  is onto. This is trivial for j # k, since Z is 
homeomorphic to Sk, and hence acyclic in dimensions other than k. 
Since Z - B # 0, there is a map f: Z - Z of degree one (see p. 304 
of [Eilenberg and Steenrod, I]) taking Z n B into a single point x, which 
can be obtained by smashing the complement of the interior of a locally 
flat k-cell in Z - B to x, and stretching the interior of the k-cell over 
Z - x,, Extend f to a map g:  ,Z u B + Z by defining g I Z = f, 
g(B) = x, , and let i be the inclusion of Z into Z u B. Then, we have the 
following commutative diagram 

Z f Z i  

ZuB 

By taking induced maps we obtain the diagram, 

H j ( Z v  B )  

Since f * is an isomorphism, it follows that i* is onto as desired. 

Proof of Lemma 4.5.3. I t  follows from Proposition 4.5.2, upon one- 
point compactifying (En, X), that the maps Hi( V - X i  + Hi(En - X )  
are onto for each i. Since for each i, these groups are cyclic and iso- 
morphic, it follows that Hi( V - X) + Hi(En - X) is an isomorphism 
for all i, and hence from the exact homology sequence of a pair that 
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H,(En - X ,  V - X )  = 0 for all i. Clearly, rl( V - X )  = 0, and by 
Proposition 4,5.2, r l ( E n  - X )  = 0. I t  now follows from the relative 
Hurewicz theorem (Theorem 4, p. 397 of [Spanier, 11) that 
r , (E% - X ,  V - X )  = 0 for all i, and this is the desired first conclusion 
of Lemma 4.5.3. (The relative Hurewicz theorem may be deduced easily 
from Theorem 3 of [Whitehead, 21 and this Whitehead theorem must 
be used in the corresponding part of the proof of Lemma 4.5.4.) 

T o  show that X is unraveled at infinity, it is enough to show that for 
any r ,  ri(En - X ,  En - ( X  u B(r) )  = 0, i = 0, 1, 2. (Recall that 
B(r)  = {x E En I 1 1  x 1 1  < r } . )  First, we would like to see that 

r 2 ( E n  - (X u B(r) ) )  + 7r2(En - X )  

is onto. Well, by Proposition 4.5.1, we know that 

7 r p n  - ( X  u B(r) ) )  = 0 

and r l ( E n  - X )  = 0. Utilizing the Hurewicz isomorphism for 1- 
connected spaces (see Theorem 5 ,  p. 398 of [Spanier, l]), it suffices to 
see that H,(En - ( X  u B(r) ) )  -+ Hz(En - X )  is onto, and this follows 
from Proposition 4.5.2 on taking the one-point compactification. Now 
consider the following part of the exact sequence of the pair 
(En - X ,  En - ( X  u B(r)))  (see p. 115 of [Hu, 11): 

i 
+ r2(En - ( X  u B(r))) -*t, rz(En - X )  -% n2(En - X, En - ( X  U B(r)))  

A r,(P - ( X  u B(r)))  --+ . * * .  

Since i, is onto, the kernel of j ,  is all of r2 (En  - X )  and so 
the image of j ,  is the zero of r 2 ( E n  - X ,  En - ( X  u B(r))) .  
However, nl(En - ( X  u B(r)))  is zero and so the kernel of a is all of 
rz(En - X, En - ( X  u B(r))) .  Thus, by exactness, 

r2(En - X ,  En - (XU B(Y) ) )  = 0 

as desired. 

Proof of Lemma 4.5.4. The first assertion of Lemma 4.5.4 comes 
from an argument like the first part of the above proof by utilizing the 
fact that the Hurewicz homeomorphism r,(S1) + H,(S1) is an iso- 
morphism for all i. (See Proposition 2, p. 394 of [Spanier, 11.) 

T o  prove the second part, compactify (En, X )  and let co denote the 
added point. There are arbitrarily small neighborhoods V of co such 
that ( V ,  ( X  u co) n V )  is homeomorphic to (En, En-2). By the first 
part of this lemma (on removing a point of X - V so as to get a string 
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again), r i (En  - X ,  V - X )  = 0 for all i .  This more than proves X 
unraveled at infinity. 

Lemma 4.5.5 (Main lemma). Let Xk C En, n - k 3 2, n 3 5 be 
a closed, LocaltyfEat k-string. If k = n - 2, assume further that En - X 
has the homotopy type of 5'' and that X is unraveled at infinity. Then, 
given any compact set C C En, there is a set V C En such that C C V and 

By Lemma 4.5.3, or by assumption if k = n - 2, X is 
unraveled at infinity. Hence, there is a compact B C En such that 
C C Bandr , (En  - X ,  En - ( X  u B)) = 0, for i = 0, 1, 2. Let W'be 
a flattening neighborhood of an arbitrary point x of X .  Then, by Lemma 
4.5.1, there is a homeomorphism of (En, X )  onto itself that takes W' onto 
a neighborhood Wsuch that B n X C Wand (W, W n X )  M (En, Ek). 
Let a:  (W, W n X )  ++ (En, Ek)  be a homeomorphism and define 
W(r) to be a-l(B(r)), where B(r) is the closed ball of radius r with center 
at the origin in En. Since B n X is compact, there is an r,, such that 
B n X C Int W(y0), see Fig. 4.5.2. 

(V ,  V n X )  M (En, Ek). 

PROOF. 

Figure 4.5.2 

Since En - X i s  an open subset of En, it is a PL manifoId. Let T denote 
a combinatorial triangulation of En - X with the property that if A is 
any simplex of T ,  then the diameter of d is less than the distance from 
d to X .  Let K be the 2-skeleton of N ( E n  - ( X  u Int W(ro)), T ) .  

We would now like to get a PL homeomorphism h, of En onto itself 
that is the identity outside of some compact subset El of En - X and 
that throws B off of K ,  that is, h, l(En - El)  = I \ (En - El)  and 
K C h,(En - B). T o  obtain h, apply Theorem 4.2.1 substituting 
(En - X ,  En - ( X  u B), K ,  E l ,  h,) for (M",  U ,  K ,  E, e l )  and extend 
the resulting h, to En by the identity on X .  Note that in order to apply 
Theorem 4.2.1 in this way, we need to know that 

a , ( E n  - X ,  En - (XU B ) )  = 0 for i = 0, 1,2 

and this follows by definition of B. 
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Define K ,  to be the union of K and those simplexes d of T such that 
d C En - (El u B). (Then, Kl C hl(En - ( X  u B)).) Let L be the 
subcomplex of the barycentric subdivision of T dual to K, . I t  is easy 
to see that I L 1 - Int W(Y,) is compact and that dim(L - W(r,)) < n - 3.  

We now would like to engulf L with Wand in doing so stay the identity 
outside some compact subset E,  of En - X ,  that is, it will be shown that 
there is a PL homeomorphism h,: En - En such that 

h, [ (E" - E,) = 1 I (E" - Ez) 

and L C h,( W).  T o  obtain h, apply Lemma 4.5.2 substituting 

(En - X ,  W - X, W ( Y ~ )  - X ,  L,  Ez , hz) 

for (M", U ,  C, P, E ,  h )  and extend the resulting h, to En by the identity 
on X .  In  order to apply Lemma 4.5.2 in this situation, we need to know 
that 

",(En - ( X  u W(ro)), W - ( X U  W(ro))) = 0 for i < n - 3. 

This follows from Lemmas 4.5.3 and 4.5.4 since it is easy to see that 
(En  - ( X  U W(y0)), W - ( X  u W(Y,))) is a deformation retract of 
(En  - X ,  W - X )  and that rrl(En - X ,  W - X )  = 0 for all i by 
those lemmas. 

By using h, and h, , we proceed to engulf C with W as in the proof 
of Theorem 4.4.1 of the last section. 

Flattening Theorem 4.5.3. Let X k  C En, k < n - 2,  n 2 5 ,  be a 
closed, locallyflat k-string. If k = n - 2,  let X be unraveled at infinity 
and let En - X have the homotopy type of S'. Then, X i s  flat .  

Lemma 4.5.5 is the analog of Lemma 3.4.1. The proof of 
Theorem 4+5.3 is now essentially the same as that of Theorem 3.4.2 and 
the analogs of the preliminary Lemmas 3.4.2 and 3.4.3 are proved 
essentially the same way as those lemmas. 

PROOF. 

Proof of Theorem 4.5.1. Theorem 4.5.1 follows directly from 
Theorem 3.6.1 and Theorem 3.5.1 for the case n = 4. For n >, 5 
Theorem 4.5.1 is in fact a corollary of Theorem 4.5.3. Let Z be the 
k-sphere in Sn which is locally flat except possibly at some point 00. 

We can assume that the point 00 is an element of C n Sk. Remove 00, 

apply Theorem 4.5.3, and extend the flattening homeomorphism 
resulting from Theorem 4.5.3 by the identity on 00 to obtain the desired 
flattening homeomorphism for Z. 
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Proof of Theorem 4.5.2 (Parts a and b). Let (Dn, Dk), n 2 5,  
K < n - 2, be a cell pair which is locally flat except possibly at one 
point x E Int(Dk). If k = n - 2, we suppose that n > 6 and that 
Dn - Dk and Bd Dn - Bd Dk each have the homotopy type of S1. 
We may assume that Dn = In and by Theorem 4.5.1 that Bd Dk = Bd Ik. 
Also, we may easily assume that x is origin, 0, in En. It follows from 
Exercise 1.7.8, that the pair (Bd In, Bd I k )  is collared in (In, Ik) .  By 
making use of this collar, we see that it can be assumed that there is a 
neighborhood U of Bd Dk in Dk which is contained in Ik. Hence, there 
is an n-cube I,n contained in Int In which is concentric with In and is 
such that (In - Int I*n) n Dk C U (see Fig. 4.5.3). 

Figure 4.5.3 

After one-point compactifying En with co and removing 0, we can 
consider the resulting space to be En where 03 corresponds to 
0, (Ek  - 0) u co corresponds to E k ,  ( E n  - Int In)  u 03 corresponds 
to I,n, ( E n  - Int I ,n)  u co corresponds to In, and Int I," - 0 corre- 
sponds to En - In.  Let Y denote the closed string which corresponds to 
( ( E k  - I k )  u Dk u 00) - 0. It is easy to see that Y can be unknotted 
by a homeomorphism which is the identity on I," by the same techniques 
used to prove Theorem 4.5.3. Therefore, by compactifying with 0 and 
removing 03, we see that we have unknotted the ball pair (I", Dk) 
staying the identity on Bd In as desired. 

EXERCISE 4.5.1. Use Theorem 3.3.1 to establish Part c of Theorem 4.5.2. 



166 4. Engulfing and Applications 

4.6. ZEEMAN ENGULFING 

Zeeman’s work on engulfing [Zeeman, 31 and Chapter 7 of [Zeeman, I], 
preceded that of Stallings which was presented in Section 4.2. Zeeman 
engulfing has a number of important applications. In  the next section 
we will discuss very nice piecewise linear embedding and unknotting 
theorems which follow from Zeeman’s engulfing theorem. We shall see, 
in this section, a simple proof, due to Stallings and based on Zeeman 
engulfing, of the weak PoincarC conjecture (see [Zeeman, 31). Also, 
McMillan’s proof that the cellularity criterion implies cellularity, which 
will be discussed in Section 4.8, involves a result of [McMillan and 
Zeeman, I] that uses Zeeman engulfing. 

At the end of this section we show that Zeeman engulfing follows 
easily from Stallings’ engulfing theorem. Nevertheless, the bulk of this 
section will be devoted to developing Zeeman engulfing by Zeeman’s 
original techniques. Our reasons for including Zeeman’s techniques are 
two-fold. First, since these techniques are adaptable to a number of 
situations, an understanding of them, in addition to Stallings’ techniques, 
is quite valuable as a research tool. Secondly, they provide simple proofs 
to several interesting results (such as the weak PoincarC theorem for 
n >, 7). For a discussion of Zeeman and Stallings’ engulfing, see [Hirsch 
and Zeeman, I]. 

Only an intuitive exposition of “piping” will be presented here. 
Piping is used by Zeeman to obtain the smallest codimension (codi- 
mension three) in his engulfing. We will present all of the techniques 
necessary to do the engulfing theorem in codimensions four and greater. 
I t  is very interesting to note that piping is not necessary if one obtains 
Zeeman engulfing via Stallings’ engulfing theorem as we do at the end 
of this section. 

A subspace X of a manifold M is inessent ia l  in A4 if the inclusion 
map X C M is homotopic to a constant. A manifold Mis k-connected  
if ?ri(M) = 0 for i < K. 

EXERCISE 4.6.1. Show that any k-dimensional subpolyhedron of a k-con- 
nected manifold M is inessential in M. 

Engulfing Theorem 4.6.1 (Zeeman). Let M m  be a k-connected PL 
manifold, and Xz be a compact pohhedron in the interior of M such that 
x < m - 3 and k 3 2x - m + 2. Then, X is inessential in M i f  and 
only i f  it is contained in an m-ball in the interior of M. 

Before proving the above engulfing theorem we will prove one lemma. 
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Lemma 4.6.1. If the polyhedron Xx is inessential in Int  M", then there 
exist polyhedra Yu and 2. in Int M such that X C Y L 2, y < x + 1, 
and z < 2x - m + 2.  

PROOF 
Case 1 (Proof of the weaker result z < 2x - m + 3). Let C be the 

cone on X. Since X i s  inessential, we can extend the inclusion X C Int M 
to a continuous map f: C -+ Int M. By the relative simplicial approxi- 
mation theorem (Theorem 1.6.11) we can make f piecewise linear 
keeping f 1 X fixed. By Corollary 1.6.5, we can homotop f into general 
position keeping f I X fixed. Therefore, the singular set S( f )  off will be 
of dimension < 2(x + 1) - m. 

Let D be the subcone of C through S( f ); that is to say D is the union 
of all rays of C that meet S(f) in some point other than the vertex of 
the cone. Then, dim D < 2x - m + 3. Since a cone collapses to any 
subcone (Exercise 1.6.8, Part b), we have C L D, and since D 3 S(f) 
we have Y I 2 where Y = f(C) and 2 = f ( D ) .  Since f(X) = X, 
X C Y I 2 and the proof of the weaker result is complete. 

Case 2 (Proof of the stronger result z < 2x - m + 2) .  This 
improvement of one dimension over Case I represents an improvement 
of the Poincare conjecture from n 3 7 down to n 2 5 .  This case involves 
piping and as mentioned earlier in this section our discussion here will 
be an intuitive sketch. For a rigorous development of piping see Chapter 
7 of [Zeeman, 11. 

As in the proof of Case 1, let C be the cone on X and obtain a map 
f: C + Int M such that f I X is the inclusion and dimension 
S(f) < 2x - m + 2. Again let D be the subcone of C through S( f). 
By a little juggling, we can arrange that the top-dimensional simplexes 
of S(f) lie inside the top-dimensional simplexes of C and that they 
get identified in pairs under f. For each pair (not through the vertex 
of C) we pipe away the middle of one of the pair over the edge of the 
cone. This alters f: C + M globally, leaving X fixed. (The previous 
alterations by simplicia1 approximation and general position were only 
local.) The  pictures of Fig. 4.6.1 are drawn for m = 5, x = 2, but, of 
course, they are very inadequate dimensionwise, and they do not depict 
the fact we have to pipe C not merely D, nor the fact that the path along 
which the pipe must run can be very kinky. T h e  pictures do, however, 
illustrate the purpose of the pipe. The  effect has been to alter f by 
piercing holes in each of the pair of top-dimensional simplexes of S( f ), 
thereby enabling us to collapse away the stuff in D of dimension more 
than 2x - m + 2 without touching the singular set of the altered f. 
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Figure 4.6.1 

More precisely, let E2x-m+2 denote the union of S( f’), where f’ is the 
alteredf, together with the (2% - m + 2)-dimensional subcone through 
the (2x - m + 1)-skeleton of S(f). Then, D L  E. (It does not matter 
that we didn’t pierce holes in those pairs of top simplexes of S( f) 
through the vertex of C, because they were not obstructing anything 
anyway.) We can now define Zaz-m+z = f ’ ( E )  and echo the collapses 
under f ’, 

The proof of Lemma 4.6.1 is complete. 

Y = f ’ ( C )  L f ’ ( D )  L f ’ ( E )  = z. 

Proof of Engulfing Theorem 4.6.1. We have Xx inessential in 
Int M ,  and have to show that X is contained in an m-ball in Int M .  
The proof is by induction on x, starting trivially with x = - 1. Assume 
the result true for dimensions less than x. 

By Lemma 4.6.1, we can choose Y and 2 in Int M such that 
X C Y L 2. where 

z < 2 x  - m + 2 < k. 
Therefore, by Exercise 4.6.1, 2 is inessential in M .  But z < x by the 
hypothesis x < m - 3. (This is one of the places where codimension 3 3 
is crucial.) Therefore, 2 is contained in an m-ball in Int M by induction. 
By Exercise 1.6.12, Y (hence X )  is also contained in an m-ball as desired. 

As a corollary of Theorem 4.6.1, we get another proof of the weak 
generalized Poincart theorem which we have already proved as Theorem 
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4.3.4. This proof via Theorem 4.6.1 is probably the most simple proof 
known of the weak generalized PoincarC theorem. 

Corollary 4.6.1 (Stallings). If Mn, n 5, is a connected, closed 
PL-manifold which has the homotopy type of Sn (actually we only need 
.rr,(M) = 0 for i < [n /2 ] ) ,  then M is (topologically) homeomorphic to Sn. 

PROOF. The corollary follows directly from Theorem 4.6,l and 
Lemma 4.3.1. 

Engulfing Theorem 4.6.2 (Zeeman). Let M m  be a k-connected PL 
manifold. Let C be a collapsible subpolyhedron and Xx, x < m - 3, a 
subpolyhedron, both in the interior of M.  If k 2 x, then there is a polyhedron 
A in the interior of M such that X C C u A I C and dim A < x + 1. 

Before proving Theorem 4.6.2, we prove a necessary lemma. 

Lemma 4.6.2. If P C C C Int B C B are polyhedra with B a PL 
m-manifold and i f  C L P and B L P, then B I C. 

PROOF. Let N be a regular neighborhood of C in Int B. Then, 
N L  C L P and so N is a regular neighborhood of P. By Lemma 
4.4.1, CI(B - N )  % Bd B x I. Therefore, B L N L C and B L C 
as desired. 

Proof of Theorem 4.6.2. By Lemma 1.6.4, there is a subpolyhedron 
X ,  of C u X such that C u X L X ,  and dim X ,  < dim X = x. NGW 
X,, is contained in an m-ball B in Int M by Theorem 4.6.1. Hence, by 
Exercise 1.6.12, C u X is also contained in an m-ball in Int M. We may 
assume that C v X C Int B by taking a regular neighborhood if 
necessary. By Lemma 4.6.2, B I C. The existence of A now follows 
directly from Lemma 1.6.3, and the proof is complete. 

Theorem 4.6.2 will suffice for most applications of Zeeman type 
engulfing. The proof of Theorem 4.6.2 presented here was quite simple 
except for the piping necessary to do the codimension 3 case. We are 
now going to prove an even stronger Zeeman type engulfing theorem by 
the same technique used to prove Theorem 4.6.2, except that we will 
use Stallings' engulfing in place of Theorem 4.6.1. Thus, piping will be 
avoided since it was not used in the proof of Stallings' engulfing theorem. 
(Theorem 4.6.2 could be slightly improved with a little more 
work. For instance, one could consider the case C n aLIM # 0 
and X n aM # 0.) 
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Engulfing Theorem 4.6.3 (Zeeman). Let C be a subpolyhedron of 
the interior of the P L  manifold Mm such that ( M ,  C )  is k-connected and 
such that C I P p ,  wherep < n - 3. Let X x ,  x < m - 3, be an arbitrary 
polyhedron in Int M. If k 2 x, then there is a polyhedron A in the interior 
of M s u c h  that X C  C u A 1  C and dim A < x + 1 .  

PROOF (via Stallings engulfing). By Lemma 1.6.4 there is a sub- 
polyhedron X ,  of C u X such that P C  X , ,  C u X L X ,  and 
dim CI(X, - P) < x. Let N be a regular neighborhood of P in Int M 
and let U = Int N .  I t  follows from Lemma 1.6.2 that the inclusion of P 
into C is a homotopy equivalence and from Lemma 4.4.1 that the 
inclusion of P into U is a homotopy equivalence. Hence, ( M ,  U )  is 
k-connected since ( M ,  C) is k-connected by hypothesis. By Stallings’ 
engulfing theorem (Theorem 4.2,1), there is a PL homeomorphism f of 
M onto itself such that f I P = 1 and X, C f ( U ) .  By Exercise 1.6.12, 
there is a PL homeomorphism f* of M onto itself such thatf, 1 X, = 1 
and C u X C f* f ( U ) .  Since f* f I P = 1 ,  f * f ( N )  is a regular neigh- 
borhood of €’. Thus, f* f ( N )  L P and C L P and so by Lemma 4.6.2 
f * f ( N )  L C. The existence of A now follows directly from Lemma 
1.6.3, and the proof is complete. 

4.7. THE PENROSE, WHITEHEAD, ZEEMAN EMBEDDING 

THEOREM A N D  IRWIN’S EMBEDDING THEOREM 

Let us begin by stating the main result of this section, Irwin’s 
embedding theorem. 

Codimension Three Embedding Theorem 4.7.1 (Irwin). Let Mm 
and Qq be PL manifolds and let f: M 3 Q be a (topological) map such that 
f I aM is  a PL embedding of aM in aQ. Then, f is homotopic to a proper 
embedding keeping a M  $xed, provided 

m < q - 3 ,  

M i s  (2m - 9)-connected, and 

Q is (2m - q + 1)-connected. 

Corollary 4.7.1. Any element of rm(Q), where Q is (2m - q + 1)- 
connected and m < q - 3, may be represented by an embedding of an 
m-sphere in Q. 
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Corollary 4.7.2. Any  closed r-connected PL manifold M ,  r < m - 3 ,  
may be embedded in E2m--r. 

Proofs of forms of Theorem 4.7.1 appear in [Irwin, 11, [Zeeman, 51 
and Chapter 5 of [Zeeman, 11. (Hudson has generalized Theorem 4.7.1 
by putting a connectivity requirement on f rather than Q. This work of 
Hudson was announced in [Hudson, 21 and the complete proof is given 
in [Hudson, 31.) Theorem 4.7.1 may be regarded as a generalization of 
an embedding theorem of Penrose, Whitehead, and Zeeman [ 11 which 
emerges as Corollary 4.7.2. Actually, as can be ascertained from [Zeeman, 
51, the techniques of [Penrose et al . ,  11 more than suffice to prove the 
following embedding theorem. 

Metastable Range Embedding Theorem 4.7.2 (Penrose et al .)  Same 
q - 1, that is, m is in the 

Before describing the organization of this section let us state a lemma. 

Lemma 4.7.1. Let M m  and Qq be PL manifolds and let f :  M + Q be 
a proper map (that is, f -1(aQ) = aM) such that S( f )  C Int M 
and such that f is in general position (that is, f is nondegenerate and 
dim S( f) < 2m - 4).  Then, there exist collapsible subpolyhedra C and D 
of Int M and Int Q, respectively, such that S( f )  C C = f -l(D), provided 

as Theorem 4.7.1 except require that m < 
metastable range with respect to q. 

m < q - 3 ,  
M is (2m - 9)-connected, and 

Q is (2m - g + 1)-connected. 

The  organization of the remainder of this section is as follows: 
(a) proof of Theorem 4.7.1 (for closed manifolds) modulo Lemma 4.7.1; 
( b )  proof of Lemma 4.7.1, via [Penrose, et al. 11, for m \< $ q - 1 
(thus giving a proof of Theorem 4.7.2 for closed manifolds); (c) proof of 
Lemma 4.7.1 via Irwin's technique (thus giving a proof of Theorem 
4.7.2 for closed manifolds); (d) statement and proof of Lemma 4.7.2; 
(e) proof of Theorem 4.7.1 for bounded case via Lemma 4.7.2. 

Proof of Theorem 4.7.1 (for M a Closed Manifold) Modulo Lemma 
4.7.1. We are given a continuous map f :  M - Q which we have to 
homotop to a piecewise linear embedding in the interior, and we 
are given that 

m < q - 3 ,  
M is (2m - q)-connected, and 

Q is (2m - q + 1)-connected. 
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By Theorem 1.7.4, aQ is collared in Q. By shrinking this collar to half 
its length (the inner half) homotop Q into Int Q. This homotopy carries 
f ( M )  into Int Q. Now use the simplicial approximation theorem 
(Theorem 1.6.11) to homotop the new f to a P L  map. Finally, apply 
Corollary 1.6.5 to homotop the resulting f to a map (renamed f )  into 
general position, dim S(f) < 2m - q. 

It now follows from Lemma 4.7.1 that there are collapsible subpoly- 
hedra C and D of Int M and Int Q, respectively, such that 

S ( f )  c c = f - ' (D)  

provided 
m < q - 3 ,  
M is (2m - q)-connected, and 

Q is (2m - q + 1)-connected. 

Choose a compact submanifold Q* of Q containing f ( M )  u D in its 
interior. Triangulate A2 and Q* so that f is simplicial and C and D are 
subcomplexes. If we pass to the second barycentric subdivisions, then f 
remains simplicial because f is nondegenerate since it is in general 
position. Let Bm and Bq denote the second derived neighborhoods of C 
and D in M and Q* , respectively. These are balls by Corollary 1.6.4, 
because C and D are collapsible. Lemma 4.7.1 implies that S(f) C B" = 

f-I(Bq).  In  fact that lemma implies more. It implies that f maps Int Bm 
into Int Bq, that f embeds aBm in aB, and that f embeds M - B" in 

We have localized the singularities o f f  inside ba11s where it is easy 
to straighten them out. More precisely, let h: Bq - Iq be a P L  homeo- 
morphism and consider hf ( aBm) C a1q. Let Cm represent the m-ball in 14 
which is the cone over hf ( aBm) from the origin. Then, hf 1 aBm extends 
to a PL homeomorphism g, of Bm onto Cm. Let g: Bm 4 Bq be defined 
by h-'g, . Then, g I aBm = h-lg, I aBm = h-lhf I aBm = f I aBm, and 
we can extend g to an embedding g: M 4 Q by making g equal to f 
outside Bm. Notice that g, was homotopic to hf I Bm keeping hf(aBm) 
fixed simply by taking each point h f ( x )  linearly to the point g,(x) inside 
of 14. Hence, g I Bm is homotopic to f I B" by a homotopy which takes 
place inside Bq and which is fixed on f ( aBm). Consequently, f is homo- 
topic to g, and this completes the proof of Theorem 4.7.1 modulo 
Lemma 4.7.1 in the case M is closed. 

Q - Bq. 

Proof of Lemma 4.7.1 for m Q !q - 1 (Penrose et d.). Since f is in 
general position, dim S(f) < 2m - q. Let %?(S(f)) denote the cone on 
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S(f). Since M is (2m - q)-connected, we can extend the inclusion 
S(f) C M to a PL map g: %(S(f)) --f Int ill in general position by 
Theorem 1.6.1 1 and Corollary 1.6.5. Hence, 

dim S(g)  < 2(2m - q + 1)  - q = 4m - 3q + 2 

< 4(3q - 1 )  - 3q + 2 = -$q - 2 < - 1 ,  

and g embeds V(S(f)) .  Consider%(f(g(V(SCf))))). SinceQ is(2m-q+ 1)- 
connected the inclusion f( g(%(S( f ) ) ) )  C Q extends to a PL map 
g,: V(f (  g(%(S( f ) ) ) ) )  + Q in general position with respect to f ( M )  
by Theorem 1,6.11 and Corollary 1.6.5. Hence, 

dim S( g*) < m + (2m - q + 1) - q = 3m - 29 + 1 

< 3(4& - 1 )  - 2q + 1 = -2, 

and sag* embeds %(f( g(%(SCf))))) andg*(%(f( g(V(S( f ) ) ) ) ) )  n f ( M )  = 

c = g(WS( f ) ) )  and = g*(V(f(g(~(S(f)))))) 

f( g(%(Scf)))). Since cones are collapsible the polyhedra 

satisfy the conditions of Lemma 4.7.1 and the proof is complete. 

Proof of Lemma 4.7.1 for m < q - 3 (Irwin). The  main idea of 
the proof is to use engulfing Theorem 4.6.2 several times in an inductive 
process. 

Since M is (2m - q)-connected, we can start by engulfing S( f )  in a 
collapsible subpolyhedron C ~ m - ~ f l ,  S(f) C C, C Int M (see Fig. 4.7.1). 
Of course, when C, is mapped by F into Q it may no longer remain 
collapsible, because bits of S ( f )  may get glued together. Nevertheless, 
since Q is (2m - q + 1)-connected, we can engulff(C,) in a collapsible 
subpolyhedron D:m-*+2, f ( C , )  C D, C Int Q. We are not finished yet 
because althoughf-l(D,) contains C, , it may contain other stuff as well. 
The  idea is to move D, so as to minimize the dimension of this other 
stuff and then engulf it. P 
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More precisely, we shall define an induction on i, where the ith- 
inductive statement is as follows: 

ith-INDUCTIVE STATEMENT. There exist three collapsible subpolyhedra 
C, , E, , and D, such that C, C Int M and Ei C D, C Int Q, such that 

( 1 )  W C C i ,  

(2) f-l(E,) C Ci Cf-l(Di), and 

(3) dim(D, - Ei) < (2m - q )  - i + 3. 

The  induction begins at i = 1 ,  by constructing C, and D, as above, 
and choosing El to be a point of f(C,). The induction ends at 
i = (2m - q) + 4, because then D, = Ei and so we have Scf) C C, = 
f-'(D,) as required. 

There remains to  prove the inductive step, and so assume the ith- 
inductive statement is true, where 1 < i < (2m - q) + 4. Then, 
f ( C i )  u Ei C D, by (2). Let f = D, - ( f (C,)  u Ed). Then, 

d imF < (2m - q)  - i + 3 

by (3). By the technique of proof of Theorem 1.6.10, we can ambient 
isotop D, in Int Q keepingf(Ci) U Ei fixed until F is in general position 
with respect tof(M), that is, 

< ((2m - q)  - i + 3) 3. (q - 3) - q = (2m - q)  - i. 

Therefore, dimf-l(F) < (2m - q) - i ,  because f is nondegenerate, 
being in general position. Let Ei+, denote the new position of Di after 
the isotopy. Then, E,+, is collapsible because it is PL homeomorphic 
to D, . Since M is (2m - 9)-connected, we use Theorem 4.6.2 to engulf 
Cl(f-l(F)) in a subpolyhedron C,,, of Int M such that 

f-l(F) C C,,, L C, and dim(Ci+l - Ci) ,< (2m - q)  - i + 1. 

Then, C,,, is collapsible because C,,, L Ci L 0; S(f) C C,,, , because 
S(f) C C,  C C,+, ; andf-l(E,,,) C Ci+l because 

f-l(Ea+J = c, u f-'(Ei) u f-l(F) = ci u f-l(F) c c,+, 



4.7. PWZ Embedding Theorem and Irwin's Embedding Theorem 175 

Since Q is ((2m - q) + 1)-connected we can now use Theorem 4.6.2 
to engulf f (Ci+, - Ci) in a subpolyhedron Di+l in Int Q such that 

f ( C i + l -  Ci) C Di+l Ei+l ,  
and 

dim(D,+, - Ei+l) < (2m - q )  - i + 2 = (2m - q)  - (i + 1) + 3. 

Then, Dz+l is collapsible because Di+l L E,,, L 0. 
We have constructed the three spaces, and verified all the conditions 

of the ( i  + l)se-inductive statement except that C,,, C f -l(Dz+l). This 
follows because f (Ci+J C Ei+, , since the isotopy kept f (Ci) fixed, and so 

This completes the proof of the inductive step, and hence the proof of 
Lemma 4,7.1. 

Before proving Theorem 4.7.1 for the bounded case we will prove the 
following preliminary lemma. 

Lemma 4.7.2. Let M" and Qq be (PL) manifolds and let f: M -+ Q be 
a (PL) map such that f 1 aM (PL) embeds aM in aQ. Then, f is homotopic 
to aproper (PL) mapg: M -+ Q keeping aMJixed such that S( g )  C Int M .  
(See Fig. 4.7.2.) 

Befo re  Af ter  

Figure 4.7.2 

PROOF. By Theorem 1.7.4 (or Corollary 4.4.4), we can choose a 
collar of aM in M ,  that is, there is an embedding 

such that c M ( x ,  0) = x for all x E aM. Let M,, = Cl(M - cM( aM x I ) )  
and let ht :  M +  M be a homotopy that starts with the identity and 
finishes with a map h, that shrinks the collar onto aM and maps M,, 
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homeomorphically onto M. Such a homotopy can be easily defined by 
stretching the inner half of a collar twice as long. I n  particular, 

h,c,(x, u )  = x 

for all x E aM and u E I .  Then, h ,  keeps aM fixed and therefore f is 
homotopic to fh, keeping aM fixed. 

Again apply Theorem 1.7.4 to get a collar of aQ in Q,  that is, there is 
an embedding 

cQ: aQ x 1-8 

such that co(y, 0) = y for all y E aQ. (In the P L  case we would apply 
Corollary 4.4.4 to a regular neighborhood Q1 off(M) and do the remain- 
der of the proof in Ql rather than Q.) Let Q,, = Cl(Q - cg( aQ x I ) ) .  
Let A,: Q -.+ Q be a homotopy that shrinks co( aQ x I )  onto aQo keeping 
Qo fixed. We now use k, to construct a homotopyg,: M -+ Q that moves 
Mo into Qo and stretches the collar c M  out again compatibly with c Q .  
More precisely, for 0 < t < 1, define 

Notice that gi keeps aM fixed. I t  is easy to check that g = g, is the 
desired map. 

Proof of Theorem 4.7.1 in the Case that M Has Boundary. After 
one appliesLemma 4.7.2, the theorem follows by the same arguments as in 
the unbounded case to eliminate the singularities of g by working entirely 
in the interior of Q. 

EXERCISE 4.7.1. Observe that the techniques of this section suffice to prove 
the following fact which is Lemma 5.10 of [Rushing, 21: L e t 8  Mm --f Q* be a 
proper map (that is, boundary to boundary, interior to interior) of the compact, 
PL m-manifold M into the topological q-manifold Q (whose interior has a 
PL structure) such that f I V is an embedding and f I ( V - aM) is PL, where V 
is a closed PL collar of aM in M. Let U C Int Q be an open set such that either 

(1) M - f-l( U )  C Int V u aM and is a collar of aM, or 

(2) M -f-’(U) = 8M. 
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Then, f is homotopic to a proper embeddingf' which is P L  on Int M ,  where the 
track of the homotopy lies inside U v f ( M ) ,  provided, 

(1) q - m 3 3 ,  

(2) 

(3) 

M is (2m - q)-connected, and 

U is (2m - q + 1)-connected. 

Furthermore, if Q is a PL manifold and iff is P L  on V ,  then f '  is PL on M. 

EXERCISE 4.7.2. Let M and Q be PL manifolds of dimensions m and q, 
respectively. Let I = [0, I]. A concordance of M in Q is a P L  embedding 
h : M x I + Q x I s u c h t h a t h ( M ~ O ) C Q ~ O a n d h ( M x  1)CQx 1.An 
isotopy of 11.1 in Q is a concordance which is level-preserving, that is, 
h(M x t )  C Q x t for all t €1. h,: M -+ Q is used to denote the embedding 
defined by h(x, t )  = (h,(x), t )  for all x E M. An embeddingf: M ---f Q is proper 
if f - l (aQ)  = a&'. A concordance (or isotopy) h of M in Q is proper if 
h-l(Q x 0) = M x 0, h-'(Q x I )  = M x 1, h, is a proper embedding and 
h-'(aQ x I )  = (hG'(8Q)) x I. 

The following theorem was announced in [Hudson, 41 and proofs appear 
in [Hudson, 1, 51. 

Concordance Theorem (Hudson). Let h: M x I + Q x I be a proper con- 
cordance of the compact P L  manifold M m  into the PL manifold p", q - m > 3, 
which is $xed on aM. 

that Hlh is level preserving. 

( Q  x 0)  u (aQ x I ) ,  such that Hlh  = h, x 1 .  

(a) Then, there exists an ambient isotopy H of Q x I ,  $xed on a(Q x I ) ,  such 

(b) Then, there exists an ambient isotopy H of ( Q  x I ) ,  jixed on 

The exercise is to use Theorem 4.7.1 and the concordance theorem to prove 
the following unknotting theorem. (A different proof of this unknotting theorem 
appears in [Zeeman, 11. A stronger unknotting theorem is proved in [Hudson, 21.) 

Unknotting Theorem (Zeeman). Let f, g :  M m  + Qg be two proper embed- 
dings such that f 1 aM = g I aM. Iff and g are homotopic keeping aMJixed, then 
they are ambient isotopic keeping aM jixed, provided 

m < q - 3 ,  

M is (2m - q + 1)-connected, and 

Q is (2m - q + 2)-connected. 
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4.8. T H E  CELLULARITY CRITERION IN HIGH DIMENSIONS 

Recall that in Section 1.8, we defined a set X in an n-dimensional 
manifold M to be cellular in M if X = Din, where each Din is 
an n-cell such that Int Din 3 D Z 1  . If M is a P L  manifold and each Di 
can be chosen as a PL n-cell, we say that X is cellular with respect to 
PL-cells. The notion of cellularity is a handy weapon in the study of 
manifolds. One reason for this usefulness is that cellular subsets behave 
essentially like points (see Corollary 1.8.2). 

The  main result (Theorem 4.8.1) of this section gives a necessary and 
sufficient condition (the cellularity criterion of McMillan [l]) for a 
compact set in the interior of a PL manifold of dimension five or more to 
be cellular with .respect to PL cells. Although McMillan obtains a 
modified version of the main result for 3-manifolds, we will not present 
that version here since in this book we are mainly concerned with high- 
dimensional phenomena. Although the main theorem is stated for X a 
compact absolute retract (abbreviated, CAR), the only property of CAR'S 
relevant to the proof is that for each open set U of the manifold containing 
X ,  there is another open set V such that X C V C U,  and the inclusion 
V -+ U is null homotopic. (We show that a CAR embedded in a manifold 
always has this property in the proof of Lemma 4.8.1.) In  the next section 
we will present one of the many interesting applications of Theorem 
4.8.1, which shows that a 1-ULC complementary domain of a topological 
(n - 1)-sphere in the n-sphere is topologically an open cell. Other 
results related to Theorem 4.8.1 will be mentioned at the end of this 
section. 

Let us now state the important property that we shall deal with 
throughout this section. 

The Cellularity Criterion. Let X be a compact set in the interior 
of an n-manifold M", n 3 3. Then X satisfies the cellularity criterion 
in M if for each open set U containing X ,  there exists an open set V 
such that X C V C U and each loop in V - X is null-homotopic in 
u - x. 

The proof of the main theorem, which we are about to state, depends 
heavily on engulfing and a trick of John Stallings which we have already 
used three times in previous sections of this chapter. (Our proof of 
Theorem 4.8.1 is based primarily on [Curtis and McMillan, 11, 
[McMillan and Zeeman, 11 and [McMillan, 11.) 

Theorem 4.8.1 (McMillan). A necessary and suflcient condition 
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that a CAR X in the interior of a P L  manifold Mn, n 2 5 ,  be cellular 
with respect to PL cells is that it satisfy the cellularity criterion in M.  

Corollary 4.8.1. Let X be a CAR in the interior of a PL manifold 
Mn, n 3 5 ,  then, X is cellular i f  and only i f  it is cellular with respect to 
PL-cells. 

PROOF. By the first paragraph of the proof of Theorem 4.8,1, if X 
is cellular, then it satisfies the cellularity criterion. Hence, by Theorem 
4.8.1, X is cellular with respect to P L  cells. 

Before beginning the proof of Theorem 4.8.1, let us establish a few 
preliminary lemmas. 

Lemma 4.8.1. Let A be a CAR in the interior of the PL n-manifold Mn. 
Then, there exists a sequence { H i }  of compact PL n-manifolds, with non- 
empty boundaries, such that Hi+, C Int Hi , A = niHi and each inclusion 
Hi+, -+ Hi is homotopically trivial. 

PROOF. 

(a) 

Let us first see the following. 

If U is an arbitrary open neighborhood of A. Then, there exists a 
jinite P L  n-manifold H ,  with nonempty boundary, such that 

A C Int H C  H C U. 

Such an H may be obtained as a small regular neighborhood of the 
closed simplicia1 neighborhood of A in a sufficiently fine subdivision 
of M .  

After we give the next statement (b), one will immediately see that 
Lemma 4.8.1 follows from (a) and (b) and so all that will remain is to 
prove (b). 

(b) Let A C Int H as in (a). Then, there exists a neighborhood V of A 
such that V C Int H and the inclusion i: V + H is null-homotopic. 

Since H is an absolute neighborhood retract, there exists (by the 
reasoning in the proof of Theorem 1.6.11) an E > 0 with the property 
that iff and g are maps of a space K into H such that d ( f ( k ) ,  g(k)) < E 

for each k E K ,  then f and g are homotopic in H. Let r be a retraction 
of H onto A, and choose V to be an open set such that A C V C Int H 
and d(x ,  r ( x ) )  < E for each x in V. Since A is contractible, V is the 
required neighborhood of A. 

Lemma 4.8.2. Suppose M ,  , M ,  , ..., Mk+, is a sequence of compact 
PL n-manifolds such that each Mi is a subspace of Mi.+, and each inclusion 
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Mi + Mi+, is homotopically trivial. If Xx is  a subpolyhedron of M ,  such 
that x < k and n - k 3 3, then X lies in a PL n-ball in M,,, . 

Our proof of Lemma 4.8.2 will be based on Zeeman engulfing 
(Lemma 4.6.1) developed in Section 4.6; however, the lemma can be proved 
just as well using Stallings’ engulfing techniques developed in Section 4.2. The 
setup of Stallings’ engulfing which we shall present later to do radial engulfing is 
particularly adaptable here. Of course, the proof via Stallings’ engulfing would 
not involve piping. 

REMARK 4.8.1. 

Proof of Lemma 4.8.2. T h e  proof will be by induction on dim X. 
Trivially start the induction with dim X = - 1 .  Assume the lemma true 
for all X of dimension < k, n - K 2 3. Given Xk C M ,  , then X is 
null-homotopic in Int  M ,  . Therefore, by Lemma 4.6.11 there exist 
polyhedra Yv and Zz in Int  M ,  such that X C Y L 2, y < x + 1 and 
z < 2x  - n + 2. But, 

z < 2x - n + 2 < 2k - n + 2 < 2(n - 3 )  - ? a  + 2 = u - 4  < k. 

Hence, by induction 2 is contained in a PL n-ball in Int  M k + 2 .  Since 
Y L 2, it follows from Exercise 1.6.12 that Y is contained in a PL 
n-ball in Int  Mk+2 and hence also X .  

Lemma 4.8.3. Let A be a CAR in the interior of the PL n-manifold M”. 
Then, there exists a sequence {Hi} of compact PL n-manifolds with non- 
empty boundaries, such that Hi+l C Int  H ,  , A = n iH t ,  each inclusion 
Hitl -+ Hi is  homotopically trivial, and i f  Y is a subcomplex of Hitl  and 
dim Y < n - 3, then Y lies in a PL n-ball in Hi . (Furthermore, Bd Hi+,  
may be assumed to be connected which shows that X cannot separate Hi .) 

All except the last sentence of Lemma 4.8.3 follows by 
combining Lemma 4.8.1 and Lemma 4.8.2. 

PROOF. 

EXERCISE 4.8.1. Establish the last sentence of Lemma 4.8.3. 

EXERCISE 4.8.2. Prove the following fact (homotopy extension theorem 
for maps of polyhedra). Let K be a complex, L a subcomplex, f o :  I K I -+ X a 
map of 1 K I into a topological space X and g,: 1 L I + X a homotopy such that 
go = fo I I L 1. Then, there is a homotopy ft: I K I + X of the map f o  such that 
g, = ft I 1 L I. (Although this fact is easy to prove, one can find a complete proof 
on p. 33 of [Hilton and Wylie, I].) 

Proof of Theorem 4.8.1. Let us first show that the cellularity 
criterion is necessary for topological cellularity, in fact, for n 2 3. 
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Let U be an open set such that X C U. By cellularity there is an open 
n-cell V such that X C V C U. Then, by Corollary 1.8.2, Y - X is 
simply connected and necessity follows. 

Now, assuming the conditions of the theorem, let X C W, where Wis  
an open set. The  proof will be complete after we show the existence of a 
PL n-ball F such that X C Int F C F C W. By Lemma 4.8.3, we may 
assume that M has been subdivided so as to contain subcomplexes 
Mo , M ,  , M ,  , M ,  with the properties: 

XC Int M,+, C Mi+, C Int Mi C Mi C W (i = 0, 1,2), 

where Mi is a compact PL n-manifold with nonempty, connected 
boundary; each inclusion Mi+, -+ Mi is homotopic to a constant; 
and if Y is a finite polyhedron in Mi+, with dim Y < n - 3, then there 
is a P L  n-ball in Int Mi whose interior contains Y.  Also, the cellularity 
criterion hypothesis on X allows us to assume that M3 is so close to X 
that each loop in Int M3 - X is null-homotopic in Int M ,  - X. 

Let P2 be the 2-skeleton of Ml . We apply Stallings' engulfing theorem 
(Theorem 4.2.1) to the PL  manifold Int M ,  to obtain a PL homeomor- 
phism h:  M ,  3 M ,  such that h is the identity in a neighborhood of 
Bd M ,  and P C h(M,  - X ) .  We have only to varify that the pair 
T = (Int M I ,  Int M ,  - X) is 2-connected. Since M3 is arcwise 
connected, TI is 0-connected. 

Now consider any path f: (A1, Bd d l )  + (Int M ,  , Int M,  - X ) .  
I f f  (4') C Int M 3 ,  then since M ,  - X is arcwise connected (by the 
statement in parenthesis in Lemma 4.8.3) and the inclusion M3 -+ M ,  
is homotopically trivial, f is homotopic (re1 Bd 4,) in M ,  to a path in 
M3 - X. In  the general case, coverf-l(X) with the interiors of a finite 
number of disjoint arcs a, , ..., ak so close to f - l ( X )  that each 
f(ai) C Int M3 . By the special case above, each path f I ai is homotopic 
(re1 Bd a,) in M ,  to a path in M ,  - X .  By piecing these homotopies 
together, we see that f is homotopic (re1 dl - ui Int a,) to a path in 
Int M I  - X .  Hence, r is I-connected. 

Now consider any map f: (A2,  Bd 4,) --t (Int Ml , Int M I  - X). If 
f (Bd 42) C M ,  - X and f (42) C Int M ,  , then by our special hypothesis 
there is a map g: 42 --+ (Int M ,  - X )  with g I Bd A 2  = f I Bd A2,  and 
f and g are homotopic (re1 Bd 4,) in Int M ,  . In  the general case, take a 
simplicia1 neighborhood K off-'(X) in a fine triangulation of and let 
N be the regular neighborhood of K in that triangulation. We may 
assume that f ( N )  C Int M, .  Let A = 1-skeleton of N and B = 
4, - Int N .  

By using the results of the 0-dimensional and 1-dimensional cases, 
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one can obtain a homotopy q ~ ~ :  A --+ Int M,  such that q ~ ,  = f 1 A, 
T(A) C (Int M3 - X), and cpt I A n B = f I A n B. (This is possible 
sincef(A n B)  C (Int M3 - X)). By the homotopy extension theorem 
(Exercise 4.8.2), we may suppose that cp, is defined on N .  That  is, there 
is al: N + Int M ,  such that @, = f I N ,  @,(A) C (Int M3 - X )  and 

I A n B = f I A n B. We now extend @1 to all of 4, by defining 
Ot I B = f I B for each t. Let p be a 2-simplex of N .  Then, @, [ p takes 
(p ,  Bd p )  into (Int M,  , Int M3 - X) and so by applying to each p the 
special case already considered, we find that Q1 is homotopic (re1 A U B)  
in Int M I  to G: A 2  + (Int M I  - X ) .  Thus, f is homotopic to G (re1 B 
and hence re1 Bd dz) and 7~ is 2-connected. Hence, the required homeo- 
morphism h exists. Extend h to all of M ,  by h I Mo - Ml = identity. 

The  proof may now be completed essentially as the proof of Theorem 
4,4.1. Briefly, form the complexQ by adding to P2 all the closed simplexes 
of CI(M, - M I )  and note that Q C h(M, - X). Let R be the complex 
in a first derived subdivision of M ,  dual to Q. Then, dim R < n - 3 
and R C Int M I  , so that there is a PL n-ball F* with 

R C IntF* C F *  C Int M ,  C W. 

There is a PL homeomorphism h*: M ,  3 M ,  such that 

h(M, - X )  u h*(IntF*) = M ,  . 

We then take F = h-lh*(F*). 

EXERCISE 4.8.3. Use the technique of proof of Theorem 4.8.1 to show that 
for n 3 3 if or, C En is an arc for which r l ( E 3  - a,) # 0, then or, does not 
satisfy the cellularity criterion, or in other terminology, En - a, is not project- 
ively I-connected. (Such arcs or, are explicit in [Blankenship, 11. For related 
arcs see Example 2.6.4.) 

A closed embedding f: Pk --f Int Qn, n - k 3, of a k-polyhedron 
P into an n-manifold Q is locally nice if Q - f ( P )  is 1 -LC at f ( x )  for 
each x E P.  Hempel and McMillan [I] proved the following important 
theorem related to Theorem 4.8.1. 

Theorem 4.8.2 (Hempel and McMillan). Let X be a CAR in the 
PL k-manifold Mk and let f: Mk --+ Nn, n - k 2 3, be a locally nice 
embedding of Mk into the PL n-manifold Nn. Then, f ( X )  satisjies the 
cellularity criterion. Hence, if n 2 5 ,  X is cellular in Nn. 

We shall mention and prove results related to the above theorem in the 
next section. Let us mention here that [Hempel and McMillan, I] 
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continues work of [Eilenberg and Wilder, 13, [Harrold, 1, 21. I n  
conclusion, we point out that Lacher [4] has studied cellularity criteria 
for maps. 

4.9. LOCALLY NICE C O D I M E N S I O N  O N E  SPHERES 

IN SnZs ARE WEAKLY FLAT 

Let us first consider more closely the concept of local connectivity 
given in Section 2.6. Let W be an open connected subset of the PL 
manifold M”. If x E (C1 W - W )  n Int M ,  then W is locally 1-con- 
nected at x (1-LC at x) if for each open set U in M containing x there 
is an open set V in M such that x E V C U and each loop in V W is 
null-homotopic in U n W. We say that W is uniformly locally 
1-connected (1-ULC) in M if for each E > 0, there is a 6 > 0 such 
that each loop in W of diameter < 6 is null-homotopic in W on a set 
of diameter < c. Analogous definitions for 0-LC and 0-ULC are 
obtained by replacing “each loop” by “each pair of points” and “is 
null-homotopic” by “can be joined by an arc” in the above. 

EXERCISE 4.9.1. Show that if C1 W is a compact subset of Int M ,  then W 
is 1-LC at each point of C1 W - W if and only if W is 1-ULC. 

Recall that in the last section we defined a closed embedding 
f: Pk -+ Int Qn, n - k 3,  of a k-polyhedron P into an n-manifold 
Q to be locally nice if Q - f ( P )  is I-LC atf(x) for each x E P. A sub- 
polyhedron Pk of Qn is locally nice if the inclusion P + Q is locally nice. 

In  this section we will give a sufficient condition for the complementary 
domains of a topologically embedded ( n  - 1)-sphere in Sffl to be open 
n-cells. In  general, if Zk C Sn is a topologically embedded k-sphere, one 
may ask for conditions which guarantee that the complement Sn - Ck is 
homeomorphic to Sn - S k ,  that is, when Sn - Zk m SnPk-l x E k f l .  
When this is the case we follow Rosen [ 13 and say that Zk is weakly flat. 

Our main theorem, which was first proved in [McMillan, 13, follows. 

Theorem 4.9.1 (McMillan). Let W be a component of S” - Zn--l, 
where 2 - l  is a topologically embedded (n  - 1)-sphere and n 2 5 .  If W 
is 1-ULC, then it is an open n-cell. 

Corollary 4.9.1. Each locally nice codimension one sphere Zn-l in 
S”, n 5 ,  is w e a k l y j a t .  
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Before beginning the proof of Theorem 4.9.1, let us mention some 
related results. It is shown in [Bing, 61 that a complementary domain W 
of a topological 2-sphere in S3 is I-ULC if and only if C1 W is a closed 
2-cell. Thus, codimension one spheres in S3 whose complementary 
domains are 1-ULC are flat. (This result is still unknown in higher 
dimensions and is a good research problem. + Seebeck [3] has shown that 
codimension one spheres in Sn whose complements are 1-ULC are 
flat if they can be approximated by locally flat embeddings. Also, partial 
results on the codimension one approximation problem have been 
obtained in [Price and Seebeck, 1, 21.) Properties of 1-ULC comple- 
mentary domains of (n - 1)-spheres in Sn were studied in [Eilenberg 
and Wilder, 13 and were shown to be contractible. (For n 3 5 ,  we 
will show here that they are in fact homeomorphic to En.) Conditions 
are given in [Rosen, 11, [Hempel and McMillan, I ]  and [Duvall, 11 
which imply that k-spheres in Sn are weakly flat. In  particular, Duvall 
shows that a k-sphere in Sn, n 2 5,2 < k < n - 3, is weakly flat if and 
only if it satisfies the cellularity criterion. Daverman [l] obtains the analog 
of this result for 1-spheres. 

Let Z be a complementary domain of an arbitrary (n - 1)- 
sphere in Sn. Show that C1 Z is a CAR. (To do this you may want to refer to 

EXERCISE 4.9.2. 

ping, 71.) 

Proof of Theorem 4.9.1. We are given W a component of Sn - Zn-l. 
Let Z be the other component of Sn - Zn-l. Then, by Exercise 4.9.2, 
C1 Z is a CAR, and so if we can show that C1 Z satisfies the cellularity 
criterion, it will follow from Theorem 4.8.1 that C1 Z is cellular. Hence, 
it will follow from Corollary 1.8.2 that Sn - C1Z = W is an open n-cell. 

Let an open set U containing C1 Z be given. Choose E > 0 so that 
N6(C1 2, Sn) C U ,  where N,(Cl 2, Sn) = {x E Sn 1 dist(x, C1 2) < c}. 

Let'S > 0 be the number corresponding to r/4 and promised by the fact 
that W is I-ULC. We take 6 < r/4. 

Since Zn-l is a simply connected compact absolute neighborhood 
retract (CANR) in C1 W, there is an open set V* is Sn such that 

2 - 1  c v* n c1 w c N,,4(zn-1, c1 W ) ,  

and each loop in V* n C1 W is null-homotopic in N,,,(Cn-l, C1 W).  
We assert that the open set required by Theorem 4.8.1 is V = Z U V*. 

Let a loop f: Bd A 2  -+ V - C1Z C V* n W be given. Then, f 
extends to 

F: A 2  + Nc,4(Zn-1, C1 W).  

* This problem has since been solved by Daverman. See the Appendix. 
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Let 6, be so that 0 < 6, < 6 and each pair of points of W within 6, 
of each other can be joined by an arc in W of diameter < 6/2. (Such 
a 6, exists since W is 0-ULC (see [Wilder, 21, p. 66, Theorem 5.35).) 
Let 6, > 0 be such that if X is a subset of A 2  with diameter < 6, then 
F ( X )  has diameter < 6J2. 

Consider a triangulation T of A 2  in which each 1-simplex has 
diameter < 6,.  We will now complete the proof by defining a map 
G: 4 2  + Nf(Zn-l, W )  C U - C1 Z ,  such that G 1 Bd 4, = f. 

Let Ti be the i-skeleton of T. If v E To and F(v)  E Zn--l, let G(v) be a 
point of W within 6,/4 (< ~ / 1 6 )  of F(v). Otherwise, let G(v)  = F(v) .  
Note that G(To) C Nfl4(Zln--l, W ) ,  G = f on the 0-simplexes of Bd A 2 ,  
and G(boundary of 1-simplex) has diameter < 6,/2 + 6,/4 + 6,/4 = 6, . 

Now G extends to T1 in the obvious fashion, mapping a 1-simplex of T 
into an arc in W of diameter < 6/2 (< ~ / 8 )  joining the images of its 
end-points. This can be done so that G = f on Bd A2(since 6,/2 < 6/2). 
Note that G(T1) C NEl2(Zn-l, W )  and G(boundary of 2-simplex) has 
diameter < 6. 

Finally, use this last fact to extend G to T 2  so that G(2-simplex) 
C W and has diameter < ~ / 4 .  Clearly, G = f on Bd A 2  and 
G(A2) C N,(Zn-l, W ) ,  which completes the proof. 

4.10. RADIAL ENGULFING 

The first radial engulfing theorem appeared as Lemma 1 of 
[Connell, 13. That radial engulfing theorem was for codimensions 
greater than three and Connell used it to show that stable homeo- 
morphisms of En, 11 3 7, can be approximated by PL homeomorphisms. 
A little later, Bing [lo] announced that he could do Connell’s radial 
engulfing theorem in codimensions greater than two, which gave the PL 
approximation of stable homeomorphisms of En for n 3 5. (The next 
section concerns such approximations.) An excellent presentation of 
Bing’s work on radial engulfing is given in [Bing, 111. The  fundamental 
results of this section are based on the part of that paper involving 
radial engulfing in codimensions greater than two. A somewhat refined 
(though easily proved) radial engulfing theorem for codimensions 
greater than three is also given in [Bing, 111. Wright [I]  later proved a 
form of that theorem for codimension three. We shall discuss these 
more refined engulfing theorems at the conclusion of this section. 

Radial engulfing has found a number of important applications since 
Connell first used it to obtain his approximation theorem. For instance, 
see [Conneliy, I], [Edwards and Glaser, 11, [Wright, 21, and [Seebeck, 31. 
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Before stating our main engulfing theorem, let us make a definition. 
Let Mn be a connected PL  n-manifold, let U be an open set in M and 
let {A,} be a collection of sets in Mn. We define what is meant by the 
statement that r -po lyhedra  in M n  can be pu l l ed  in U along {A,}. 
This means that if Pk is any k-polyhedron whatsoever in Mn and Q is a 
subpolyhedron of Pk that lies in U and is such that dim(P - Q) < r ,  
then there is a homotopy H :  Pk x [0, 11 -+ M such that Ho = I ,  
Hl(Pk) C U,  H ,  = 1 on Q and for each point x E Pk, H ( x  x [0, I]) lies 
in an element of {A,}, For example, if Mn = En, U = g( U') (where g is 
a fixed homeomorphism of En onto itself and U' is an open ball with 
center at the origin), and {A,} is { g(A,')} (where {A,'} is the collection of 
all open rays leading from the origin), then for each i < n, i-polyhedra 
can be pulled into U along {AJ. 

Radial Engulfing Theorem 4.10.1 (Bing). Let Mn be a connected 
PL n-manifold without boundary, U an open set in Mn, P an ( n  - 3)- 
dimensional polyhedron (not necessarily compact), Q C P a subpolyhedron 
in U such that R = Cl(P - Q) is compact and of dimension r.  Suppose 
that f is a map of M n  onto ajinite-dimensional metric space Y such that for 
each open covering (G,} of Y ,  r-polyhedra ( r  < n - 3)  in M n  can be 
pulled into U along { f -l(Gm)}. Then, for each open covering {Go'} of Y there 
is  an engulJng isotopy H :  M n  x [0, 11 -+ Mn such that 

(4) for each x E Mn, there is a G,' E {Go'} such that H ( x  x [0, I]) lies 
in f -l( G,'), 

( 5 )  
In  order to state a couple of corollaries to Theorem 4.10.1 which will 

be used in the next section, let us formulate a little notation. Let 
0,. = {x E En I JJxJJ < r }  and let ,On denote the complement of 0,. in En. 
If 0 is the origin in En and x # 0 # y ,  then e{x, y }  will represent the 
angle in radians between the two line intervals, one joining 0 to x and the 
other joining 0 toy .  Thus, 0 < d{x, y }  < T. 

H ,  is the identity outside a compact subset of M .  

Corollary 4.10.1 (Connell). Suppose that a ,  b, and E are numbers 
such that 0 < a < b and E > 0. Let g: En -++ En be a homeomorphism 
and suppose that P is a polyhedron such that P C g( 0,") and dim P < n - 3. 
Then, there is a PL homeomorphism h: En ++ En such that h I g(07Q-c,) = 1, 
h 1 #(,On) = 1, h( g(0,")) 3 P and e{ g-l(h(x)), g-l(x)} < E for all X E  En. 
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Corollary 4.10.2 (Connell). Suppose that a, b, and E are numbers such 
that 0 < a < b and E > 0. Let g :  En - En be a homeomorphism and 
suppose that P is a polyhedron such that P C g( ClaOn)) and dim P < n - 3. 
Then, there is a P L  homeomorphism h : En - En such that 

I g((b+c)O") = , I d o a n )  = 9 h(g(C1(bO"))) p ,  

and fl{ g-'(h(x)), g-'(x)} < E OY all x E En. 

Let us establish a couple of preliminary lemmas before beginning 
the proof of Theorem 4.10.1. The  following point-set exercise will be 
used in the proof of Lemma 4.10.1. 

Suppose that g :  P x [0, 11 -+ M is a homeomorphism 
where P is a polyhedron and M is a manifold. Show that there is a positive 
number S such that any connected set which lies in the S-neighborhood of the 
union of two g(x x [0, 11)'s actually lies in the 6-neighborhood of one of them. 

Lemma 4.10.1 will play a similar role in the proof of the radial 
engulfing theorem 4.10.1 to that played by Exercise 1.6.12 in the proofs 
of Stallings' engulfing theorem 4.2.1 and Zeeman's engulfing theorems 
in Section 4.6. Lemma 4.10.1 is more refined than Exercise 1.6.12 in 
that its conclusion contains a restriction on the paths of points. 

EXERCISE 4.10.1. 

Engulfing Lemma 4.10.1. Suppose that 

P is a polyhedron, 
T is a triangulation of P x [0, 11, 
g :  P x [0, 11 + M n  is a map into the P L  n-manifold Mn which is a P L  

homeomorphism on each simplex of T ,  
L is a subpolyhedron of P x [0, 11 containing all singularities of g and 

which is the union of vertical segments of P x [0, 11. ( A  vertical segment 
of P x [0, 11 is a set of the form x x [0, 11 where x E P.) 

C is a closed set in Mn such that C n g ( P  x [0, 11) C g ( P  x 1) u g(L) ,  
and 

U is an open set in Mn containing g ( P  x 1) u g(L) .  Then, for each 
E > 0 there is an engulfing isotopy H :  M n  x [0, 11 -+ M" such that 

H,  = 1, 

H ,  = 1 on C, and 
for  each x E Mn, either H ( x  x [0, 13) is apoint or there is apoint y E P 

4 g ( P  x [O, 11) c u, 

such that H ( x  x [0, 11) lies in the E-neighborhood of g( y x [0, 11). 
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PROOF. Let L' be a polyhedron in P x [0, 13 which is the union of 
vertical segments in P x [O, 13 and such that g(L') C U and L contains 
no limit points of (P x [O, 11) - L'. If we add g(L') to C,  replace 
P x [0, 11 by Cl((P x [0, I]) - L'), and replace L by 

CI((P x [0, 11) - L') n L', 

we see that we can assume with no loss of generality that g has no 
singularities. Hence, we suppose g: P x [0, I]  -+ M n  is a homeo- 
morphism and P x 0 = P. 

Apply Exercise 4.10.1 to obtain a positive number 6 such that any 
connected set which lies in the &neighborhood of the union of two 
g(x x [0, 11)'s actually lies in the eneighborhood of one of them. 

Let Tl be a subdivision of T such that L is the union of simplexes of Tl 
and g is a linear homeomorphism on each simplex of Tl that takes it 
onto a set in Mn with diameter less than 8. Let T2 be a subdivision of 
T1 that is cylindrical-that is, the vertical projection of P x [0, 11 
onto P x 0 sends each simplex of T2 linearly onto a simplex of T2. 

We now prove the lemma by induction on the dimension of P. If this 
dimension is 0, we push out in Mn along mutually exclusive polygonal 
arcs in g(P  x [O, 11). If dim P = p > 0, we let Pp-l be the ( p  - 1)- 
skeleton of T 2  restricted to P x 0 = P and let 8, , 6, , ..., &m be the 
openp-simplexes of T2in  P x 0 = Pwhich missL. Let V1, V ,  , ..., V,  
be mutually exclusive open sets in Mn such that Vi n g(P  x [0, 11) = 

g(& x [0, I]), Vi n C = 0 and Vi lies in the 8-neighborhood of 
g(xi x [0, I]), where xi is the barycenter of 6,. 

It follows by induction on p that there is an engulfing isotopy 
H :  Mn x [0, h] -+ Mn such that H,, = 1, H' = 1 on C, 

g(P"-1 x [O, 11) c HI/,(U) 

and if x E Mn, either H ( x  x [O, *I) is a point or there is a point y E P 
such that H ( x  x [0, 41) lies in a &neighborhood of g( y x [0, 11). The  
engulfing H :  Mn x [O, 41 -+ Mn is extended to H :  M'L x [i, 13 + M n  
by pushing down through the Vi in a manner similar to the one indicated 
in Exercise 1.6.12. 

If R is an r-polyhedron and H :  R x [0, 11 -+ M is a map into the 
manifold M ,  then a polyhedron L C R x [0, 11 is called a shadow for 
H relative to the set X C R x [0, I] if 

d i m L < r -  1, 
L is the union of vertical segments of R x [0, 11, 
X C L, and 
if x, y E R x [0, 11 with H ( x )  = H(  y),  then x E L if and only if y E L .  
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Shadow-Building Lemma 4.10.2. Let M n  be a PL n-manifold 
without boundary, P be an ( n  - 3)-polyhedron (not necessarily compact), 
and Q be a subpolyhedron of P such that R = Cl(P - Q) is a 
compact r-subpolyhedron of P. Suppose that T is a triangulation of 
(Q x 0)  u ( R  x [0, 11) and H :  (Q x 0) LJ ( R  x [0, 11) - Mn such 
that 

H ( x  x 0)  = X, 

H is a PL homeomorphism on each simplex of T,  
H is in general position with respect to T in the sense that if Int ui and 

Int oj are different open simplexes of T with dimensions i, j ,  respectively, 
then dim H(ui) n H ( d )  < i + j  - n. 

Let X ,  denote the set of singularities of H in R x [0, I] resulting from 
considering pairs of elements of T at least one of which is  of dimen- 
sion less than n - 2, and let Tn-3 denote the ( n  - 3)-skeleton of T. Then 
for each E > 0 there is a P L  ehomeomorphism g o f ( Q  x 0 )  u ( R  x [0, 11) 
onto itself such that g I Tn-3 v X ,  = 1 and such that there is a shadow L 
for Hg I R x [0, 13 relative to the set of singularities of Hg in R x [0, 11 
resulting from considering pairs of simplexes of T such that at least one 
member of the pair has dimension less than n - 2. 

PROOF. Let X denote the singular set of H. Unless r = n - 3, we 
can let g = 1 and L be the union of all vertical segments through the part 
of X which lies in R x [0, 11. Hence, suppose r = n - 3. 

The first approximation of L is the set L ,  which is the union of all 
vertical segments through X ,  . Then, L, contains X ,  and is of dimension 
less than or equal to r - 1. Unfortunately, it may contain many points 
of X - X, so we shall move some of these off L, before getting our 
second approximation L, . 

Since dimL, < n - 4 and dim X < n - 4, it follows from the 
general position techniques of proof of Theorem 1.6.10 (see Theorem 15 
of [Zeeman, I ] )  that there is a small PL homeomorphism g, of 
(Q x 0) u ( R  x [0, 11) onto itself that is the identity on Tn-3 U X ,  
such that dim L, n g,(X - X,) < n - 6. Let X ,  3 X ,  be the set 
of all points x of g l ( X )  such that for some point y E L ,  n g l ( X ) ,  
Hgil(x)  = Hgcl(y). To see that dim ( X ,  - X,)  < n - 6 see Remark 
4.10.1. Let L, be the union of all vertical segments in R x [0, 11 through 
points of X, . Note that L, C L ,  and dim(L, - L,) < n - 5. 

Let g,  be a small PL homeomorphism of (Q x 0) u ( R  x [0, 13) onto 
itself that equals the identity on Tn- ,  u X ,  u g l ( L ,  u ( X ,  - X,)) and 
such that dim(L, - L,) n g,(g,(X - X,)) < n - 9. Let X ,  3 X ,  be 
the set of all points x ofgg,(X) such that for some pointy E L, n g g l ( X ) ,  
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Hgilgil(x) = HgT1gT1( y). Let L, be the union of all vertical segments in  
R x [0, 11 through points of X ,  . Note that dim(L, - L,) < n - 6 .  

We continue defining Xi , Li , and gi until we have reduced the dimen- 
sion of X,,, - X, to a negative. Theng = gl'g;' 6 . -  g;lg& and L = L, . 
If we have taken care that the gz are sufficiently close to the identity, we 
will have thatg is an +homeomorphism. 

We now show why dim(X, - X,) < n - 6. Since any 
point of X - X ,  is in the interior of an (n - 2)-simplex of T, no point of 
X - X ,  can hit a point of X ,  under H .  Hence, the only points of gl(X) which 
hit points of L, n gl(X) under Hg-l, in fact hit points of L, n g,(X - X,) 
under Hg-1. Since dimL, n g,(X - XI) < n - 6 and Hg-l is nondegenerate, 
the set X ,  - XI of points which hit points of L, n g,(X - XI) under Hg-l also 
has dimension < n - 6 .  

The  proof is by induction on Y .  In  the case 
Y = 0, mutually exclusive polygonal arcs are run from points of R to U 
so that each of these polygonal arcs lies in an element of {f-'(GB')}. Then, 
U is pushed out near these polygonal arcs. Suppose the theorem is true 
for nonnegative integers less than 7. We will now show that it is true for r 
i f r < n - 3 .  

Let k = dim Y and let {G:} be an open covering of Y such that any 
connected subset of Y that lies in the sum of k + 2 elements of {GI} lies 
in one element of {Go'}. For i = 1 ,  2, ..., k + 1, let {Gh,} be a discrete 
collection of open sets in Y such that {Gh,) refines {Gl} and (Gf} = 
{Gtl} u {G"2} u * - -  u {Gt;:} covers Y. (That such collections of open 
sets exist, follows from the k-dimensionality of Y (see Theorem VI of 
[Hurewicz and Wallman, 11)). 

Let H1:  Pk x [0, I] --f M be a homotopy pulling R in U along 
f-l{G:}, that is, H,,' = 1 ,  Hll (Pk)  C U ,  Hll = I on Q and for each 
point x E Pk, Hl(x x [0, 11) lies in an element off-l{GY}. Apply Part 1 
of Theorem 1.6.10 to obtain an approximation H2 of H 1  and a triangu- 
lation T of (Q x 0) u (R x [0, 11) such that H 2  is a linear homeo- 
morphism on each simplex of T,  HO2 = 1, HI2(P)  C U, H2(Q x [0, 11) C U ,  
and the mesh of T is so fine and H 2  so close to H 1  that if u is an element 
of T in R = R x 0, then H2(u x [0, 13) lies in an element off-l{G:}. 
It will be convenient for our argument that T restricted to I? x [0, 13 be 
a cylindrical triangulation, that is, the vertical projection onto R x 0 
sends each simplex of T linearly onto a simplex of T. 

Apply Part 2 of Theorem 1.6.10 to obtain a PL approximation H 3  of H 2  
such that 

HO3 = 1, 

REMARK 4.10.1. 

Proof of Theorem 4.10.1. 

H3[(R x 1) u ([Q n RI x [O, 11)l c u, 
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if u is an element of T in R = R x 0, then H3(u x [0, 11) lies in an 
element off -l{G:}, 

H 3  is a PL (not necessarily linear) homeomorphism on each simplex 
of T ,  and 

H 3  is in general position with respect to T in the sense that if Int ui, 
Int uj are different open simplexes of T with dimensions i , j  respectively, 
then dimension H3(Int ui) n H3(Int ui) < i + j - n. 

By applying Shadow Building Lemma 4.10.2, we may assume that 
there is a shadow L for H 3  I R x [0, 11 relative to the set of singularities 
of H 3  in R x [0, 13 resulting from considering pairs of simplexes of T 
such that at least one member of the pair has dimension less than n - 2. 

Let Kr-2 be the (Y - 2)-skeleton of T restricted to R and Kr-l the 
(Y - 1)-skeleton of T restricted to R. Choose an ordering u1 , u2 , ..., uj-2 
of the r-simplexes of T in R = R x 0 so that there are k + 2 integers 

1 = k,  < k ,  < < kk+2 = j - 2 

so that if k, < m < k,,, then H3(um x [0, 11) lies in an element of 

I t  follows by induction on Y that there is an engulfing isotopy 

H ,  = 1, 
H ,  1 Q u H3((R x 1) u ((8 n R) x [0, I])) = 1 ,  and 

{ f  -1(G:41. 

H :  Mn x [0, l/j] + Mn such that 

H3( K'-2 x [O, 11 u L) c H I t j ( W  

We note that H 3  is a homeomorphism on (Kr-l x [0, 11) - L, SO we 
can apply Engulfing Lemma 4.10.1 to extend H :  M n  x [0, 1/j] + M 

for l / j  < t < 2/j, H ,  = H1tj on 
to H :  M n  x [l/j, 2/j] -+ M so that H3(Kr-l x [O, 13) c H,lj(U) and 

Q u H3(((Q n R )  x [0, I]) u ( R  x 1) u (R-, x [0, 11) U L).  

Now consider u1 and all the (Y + 1)-simplexes of T above it. Suppose 
there a re j ,  of these. By starting at the top and working his way down 
inside the element off-l(G:l) containing H3(u, x [0, l]), one finds in j ,  
applications of Lemma 4.10.1, that H :  M n  x [0, 2/j] - M can be 
extended to an isotopy I$: Mn x [2/j, 3/j] + Mn such that 

H3(all r-simplexes of T above ul) C HSli( U )  

and for 2lj < t < 3/j, H ,  = H2tj on 

Q u H3(((Q n R )  x [o, 13) u (R x 1) u ( R - l  x [0, I]) u L).  
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[In each application of Lemma 4.10.1, we cover up the image under H 3  
of an ( r  + 1)-simplex of T,  but in working down to those beneath it, 
we do not necessarily keep it covered, since L was not required to contain 
all singularities of H3.  Notice here also that things might have gone wrong 
if we had omitted the last requirement in the definition of a shadow. 
As we pushed across an H3(7), where T is an ( r  + 1)-simplex, we might 
have uncovered part of H3(L)  through H3(7’) where T’ is another ( r  + 1)- 
simplex.] 

By working his way down the cylinders above u2, u3,  ..., ui-2 one at a 
time, one finds, on repeated applications of Lemma 4.10.1, that H can be 
extended to an isotopy H :  Mn x [0, I ]  -+ IMn such that 

H, = I ,  
H ,  = 1 onQ,  
H3(r-skeleton of T )  C HI( U ) ,  and 
for each x E Mn, there is a G,’ E {GB’} such that H ( x  x [0, 11) lies 
in f-l(G,’). 

This H is the required engulfing isotopy. 
As mentioned at the first of this section, Bing has proved the following 

more refined engulfing theorem for codimensions greater than three. 
The proof of this theorem follows the lines of proof of Theorem 4.10.1 
except that one doesn’t have to worry much about shadows since they are 
easy to find in codimensions greater than three. 

Radial Engulfing Theorem 4.10.2 (Bing). Let M n  be a connected P L  
n-manifold without boundary, U an open set in Mn,  P an ( n  - 3)-dimen- 
sional polyhedron (not necessarily compact), Q C P a subpolyhedron in U 
such that R = Cl(P - Q) is compact and of dimension r < n - 4. 
Suppose that {A,} is a collection of sets such that finite r-complexes in Mn 
can be pulled into U along { A J .  Then, for each E > 0, there is an engufJng 
isotopy H : M n x [ O , l ] - + M n s u c h  that H , = l ,  H , I Q = I ,  PCH,(U),  
and for each x E Mn there are r + I elements of {A,} such that the track 
H ( x  x [0, 13) lies in the e-neighborhood of the union of these r + I 
elements. 

Before stating a codimension three form of the above theorem, let us 
make a definition. The  double €-neighborhood of an element A, of a 
collection {A,} of sets in Mn is defined as follows: 

N,2(A,) = (x E M” I x E Nf(A,, Mn) for some A, which 

intersects Nf(A,,  M”)}.  
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Wright [I] in generalizing Theorem 4.10.2 to the case r = n - 3 
employed Zeeman's piping lemma (discussed in Section 4.6) and piping 
apparently necessitates the use of the double 6-neighborhood. Certainly 
the theorem would be more pleasing if this concept could be avoided. 

Radial Engulfing Theorem 4.10.3 (Wright). Assume the hypotheses 
of Theorem 4.10.2 except allow r to be n - 3. Then, for each E > 0, there 
is an engulJing isotopy H: Mn x [0, 1 J + Mn such that H, = 1, H, J Q = 1, 
P C HI( U ) ,  and for each x E Mn there are r + 2 elements of {A,} such 
that the track H(x x [0, 13) lies in the +neighborhood of the sum of some 
r + 1 of these elements and the double +neighborhood of the remaining 
element. 

For an indication of how to improve Theorem 4.10.3 see [Edwards 
and Glaser, I]. 

4.11. T H E  PL A P P R O X I M A T I O N  OF STABLE 

HOMEOMORPHISMS O F  En 

A homeomorphism h of a connected manifold M is said to be stable 
if h = h,h,-, ... h, , where hi is a homeomorphism of M which is the 
identity on some nonvoid open subset U, of M ,  i = 1, 2, ..., m. The 
n-dimensional stable homeomorphism conjecture is the conjecture 
that every orientation-preserving homeomorphism of Sn (equivalently 
En) is stable. In [Brown and Gluck, 13, it is shown that the n-dimensional 
stable homeomorphism conjecture implies the n-dimensional annulus 
conjecture (given in Remark 1.8.3) and that the annulus conjecture in all 
dimensions < n implies the stable homeomorphism conjecture in all 
dimensions < n. Kirby, Siebenmann, and Wall [I]  have established the 
n-dimensional stable homeomorphism conjecture for n 2 5 (hence the 
n-dimensional annulus conjecture for n >, 5 ) .  The stable homeomor- 
phism conjecture follows for n = 3 from [Bing, 41, [Bing, 51, or [Moise, 21 
and for n = 2 from the classical Schoenflies Theorem. The purpose of 
this section is to show that stable homeomorphisms of En, n 2 5 ,  can be 
approximated by P L  homeomorphisms. (As stated in the last section, 
this was first proved in [Connell, 13 for n 3 7 and extended to n = 5,  6 
by Bing [lo].) Since the n-dimensional stable homeomorphism conjecture 
is now known for n 2 5 ,  it follows that any homeomorphism of 
En, n 5,  can be approximated by a PL homeomorphism. I t  is also 
known that any homeomorphism of E3 can be approximated by a piece- 
wise linear one (see [Bing, 51 or [Moise, 31). 
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I n  this section we shall continue our policy of shunning abstract 
triangulations and using only rectilinear triangulations, although 
Connell’s original proof does use abstract triangulations. The  proof of 
the main theorem (Theorem 4.11.1) of this section (which we are about 
to state) will be presented “backwards” in the sense that it will first be 
given modulo a lemma (Lemma 4.11.1) and then that lemma will be 
proved modulo another lemma (Lemma 4.11.2) and finally a proof, 
based on results of the preceding section, will be given for the latter 
lemma. We feel that this order of presentation motivates the proof. 

Theorem 4.11.1 (Connell and Bing). If g:  En --+ En, n 2 5 ,  is a 
stable homeomorphism and ~ ( x ) :  En 3 (0, 00) is  a continuous function, 
then there exists a PL homeomorphism f: En - En such that 

dist(f(x), g(x)) < ~ ( x )  ~ O Y  x E En. 

Before giving the proof of Theorem 4.11.1, let us state a preliminary 
lemma. 

Lemma 4.11 .l. Let g:  En - En, n 2 5 ,  be an arbitrary (topological) 
homeomorphism such that g I 0 isPL (where 0 = 0,” as deJned in the last 
section). Let h: 0 - En be a homeomorphism such that h(0) = 0, 
O(h(x), x) = 0 for x E 0 and if0 < r < 1, there exists a number p ( r )  > Y 

such that h((C1 Orn) - Orn) = C1 O$., - OF,,, . Then, i f  ~ ( x ) :  0 -+ (0, 00) 

is continuous, there is a P L  homeomorphism f :  g ( 0 )  - En such that 
dist(fg(x), gh(x)) < ~ ( x )  for x E 0. 

Proof of Theorem 4.1 1.1 Modulo Lemma 4.1 1 .l. Since g is stable, 
there exist homeomorphisms g,  , g, , ..., g, and nonvoid open sets 
U, , U , ,  ..., U, such that g, I U, = 1 for i = 1, 2, ..., m and g = 
g,g,_, g,  . If each g, can be approximated by a PL  homeomorphism, 
then clearly g can also. Thus, it may be assumed that there exists a non- 
void open set U such that g I U = 1. We now see that it will more than 
suffice to prove the following proposition. 

Proposition 4.11.1. If g:  E n  -+ En, n 2 5 ,  is a homeomorphism 
which is P L  on some nonempty open set U and E(x):  En -+ (0, 03) is a 
continuous function, then there exists a PL homeomorphism f :  En - En 
such that dist(f(x), g(x))  < ~ ( x )  f o r  x E En. 

At first glance, Proposition 4.11.1 appears to be a stronger fact than 
we need. However, in view of the following exercise, it is not. We prove 
Proposition 4.11.1 directly because it causes us no extra trouble. 
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EXERCISE 4.1 1.1. Show that an orientation preserving homeomorphism h 
of a connected PL manifold M which is PL on some nonempty open set U is 
stable. (Hint: First show that a homeomorphism of a connected manifold M 
which agrees with a stable homeomorphism of M on a nonempty open set is 
stable.) 

Proof of Proposition 4.11.1 Modulo Lemma 4.11.1. For con- 
venience suppose U 3 Oln = 0. Let h:  0 - En be a homeomorphism 
as in the statement of Lemma 4.11.1, that is, h(x) = p(11 x 1 1 ) ~ .  By 
applying Lemma 4.11.1, we can obtain a PL homeomorphism 
f 2 :  g ( 0 )  - En such that f i g  I 0 approximates gh very closely. We can 
also appIy Lemma 4.1 1 ,I to obtain a PL homeomorphism fi: 0 - En 
such that f l  approximates h very closely. (To get fl , let the g of Lemma 
4.11.1 be the identity.) Then, f = f2gfT1: En --w En is the PL homeo- 
morphism we seek. It is easy to see that by making f 2  approximate gh 
closely enough and fl approximate h closely enough, we make f2gfr1 
c(x)-approximate g .  

Before proving Lemma 4.11.1, let us state another lemma. 

Lemma 4.1 1.2. Let g: En --w En be an arbitrary (topological) homeo- 
morphism and a, b, and E numbers with 0 < a < b and E > 0. Then, there 
is a P L  homeomorphism f * :  En - En such that f* I g(0:-,)  = 1, 

a l l y  E En. 
f *  I #(*+SOn) = 1 9  f*(g(Oan)) and @k-'(f.(A), g-'(y)) < s f o r  

Proof of Lemma 4.11.1 Modulo Lemma 4.11.2. First, we claim 
that given ~ ' (x ) :  0 + En, it will suffice to find a PL homeomorphism 
f :  g(0)  --w En such that dist(g-lfg(x), h(x))  < ~ ' ( x )  for x E 0. We can 
ensure by choosing ~ ' ( x )  small enough that dist(y, z) < c'(h-l(z)), 
y ,  z E En, implies dist( g( y ) ,  g(z)) < c(h-l(z))  and so the claim follows by 
setting y = g-lfg(x) and 2: = h(x).  

Thus, the proof calls for a P L  expansion f of g ( 0 )  onto En such that 
g-lfg I 0: 0 - En is nearly radial. The  difficulty arises that after a 
sequence of expansions via Lemma 4.11.2, an "angle error" may 
accumulate. This is overcome, however. 

Let 6(w):  En -+ (0, 00) be a continuous function such that if 
v, w E En, -6(w) < / /  v I/ - / /  w / /  < 6(w) and O{v, w }  < 6(w), then 
dist(u, w )  < e'(h-l(w)). Let 0 = yo < r1 < r2 be an increasing 
sequence of numbers such that r ,  -+ 1 as n + 00 and p(rZ+2) - p(ri)  < 
min S(w) for w E C1(O,,,i+,,) (denote this min by SZ). 

It follows from Lemma 4.11.2, that there exists a P L  homeomorphism 



196 4. Engulfing and Applications 

4 y:: 

Figure 411.1 

homeomorphism fk: En - E" such that 

f k  I f k - l f k - 2  '*'flg(ork-l) = 

f k  l fk- l fk-2 "'flg(drk+l,o) = I J  (2) 
(3) fk(fk-lfk-2 ." f l d o r k ) ) f k - l f k - 2  * * '  f ldo@(rk)) ,  
(4) e{(fk-lfk-2 "'flg)-~k(z), (fk-lfk-2 "*fl g)-l(z>) < s k / 2  for En* 

From (2) follows 

Suppose (2') is true for K - 1, that is, supposefk-l a * *  fig 0 = 1. 

(2), fkf,-l **.f ig  (,,(,.+l)O = 1. Therefore, (2') follows from (2) by 
induction. 

Define f :  g(0 )  -++ En byf  = .-.f3fifl Ig(0). This f will satisfy the 
conclusion of the lemma. First it will be shown that f is well defined. 
Let x E g(0). Then there is an integer k such that x E g(0J. From ( I ) ,  
f, I f,-l **.flg(Orl-l) = 1 for s = 1, 2, ... and since x ~g(0,B) when 
s > k , f ( x )  = fk . . . f l(  x )  and thus f is well defined. Since each f i  is PL 

(2') fkfk-1 ***f ,g  l(fiw#+l,o) = 1. 

Then, since u(rk+l)o u(rk)O,  fk-lfk-2 "*fig = l ,  and thus by 
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and since f is defined by a finite number of the f i  on any compact subset 
of g ( O ) ,  it is clear that f is a PL homeomorphism. 

It remains to be shown that I g - l f ( x )  - h(x)l < ~ ' ( x )  for x E 0. 
Observation A, . f ( g ( 0 7 , ) )  3 g(Ou(7k)) for k = 1, 2, ... . T o  

see this, note that f( g ( 0 , ) )  = f k f k - 1  fl( g ( 0 , ) )  which by 
(3), 3 f k - ,  f k - 2  ..* fl( g(ou(vk ) ) ) ,  and it follows from (2') that this is equal 

Observation A, . f ( g(07b+l ) )  C g(Ou(Tk+3)) for k = 0, 1, 2 ... . T o  see 
to g(OUk*))- 

this, note that 

f ( (g(O, ,+J)  = fk+lfk * * .  fl(gPT*+l)) C f k + l f k  - - *  fl(g(Ou(V,+*))) 

and this is equal to g(Ou(7k+2)) because f k + l f k  f l  is the identity on 
0 U ( r b + J  * 

Observation A. If x E Ork+l - Or*,  then 

-8, < llg-lfg(x)/l - II @ l l  < 6, * 

It follows from A, and A, that fg (x )  E g(,,(?,)O) n g(Ou(,p+,)), hence 
g-'fg(x) E U(,,)O n O,(,,+,) from which it follows that ,u(rk) < 
value of IIg-'fg(x)ll - 1 1  h(x)l) is < ~ ( r ~ + ~ )  - p(rk) which is < 6 k ,  and 
the result follows. 

Observation B, . If y E rkO then O{g- l ( fkfk- ,  * - * f l ) g ( y ) ,  y }  < Sk/2. 

11 g-'fg(x)ll < /-4rk+2)* P ( 7 k )  < 1 1  h ( x ) l l  < d r k + l ) .  Thus, the 

According to 9 f k f k - 1  "' flg(y) g(u(Tk)O)? hence 

g - Y f k f k - 1  * ' .  f M Y )  E U(7dO. 

By (2'), f k - I f k - 2  ' * *  f i g  I(u(7JO) = 1. Therefore, 

%-l(fkfk-l .'. f l )E(Y) ,  Y l  = { ( fk -1  *.* f l ' P ( f k  . ' . f l ) d Y ) ,  Y )  

= 4 ( f k - l  *-flg>-'(fk -.. f M Y ) t  (fk-1 -*flg)-'(fk-l *..f1&9(Y)) 

which is < 6,/2 by (4) as can be seen by setting z of (4) to be 
f k - 1  . . . f , g ( y ) .  This shows B,.  

Observation B, . g - ' ( f k  .*.f1)-l(fk+, . . * f l ) g ( 7 k O )  C (7kO). This wi1I 
be true if ( f k f l  . . . f l )g ( ,kO)  C (fk * - .  f i ) g ( , . , O ) ,  which follows easily from 

Observation B. If x E - OrL , then 6{g-'fg(x),  x} < 6 ,  . Let 
y = g-l(fk . . - f1 ) - l ( fk t l  . . . f i ) g (  x). By B,  , y E ,*O. Substitute y in the 
inequality of B, and obtain 

(l),fk+l I f k  * * ' f l g ( o r b )  = 1* 

e{g-'(fk+lfk * "  fi)dx), Y> = O{g-'fg(x)* r> < 
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Now, 
@{Y, 4 = W Y f k  - '* f l>- ' ( fk+l  -.f,)g(x), 4 

= W f k  . '.flg)-lfk+l(fk *..f,g)(x), ( f k  . '.flg)-'(fk * * *  f ,g)(x))  

which is < 6k+1/2 by (4). Now, by the triangle inequality, 

W l f g ( x ) ,  4 < ( S k P )  + (W) < 
and B follows. 

Conclusion. If x E 0, then there is an integer K such that 

e{ g-lfgtx), x} = e{ g-lfg(x), h(x)}  < -6, . In  the definition of 6(x) at the 
beginning of the proof, let z, = g-lfg(x) and w = h(x),  and note that 
6(h(x))  2 6, because \ \  h(x)\) < p(rk+l). Thus, from the definition of 
6(w), dist(v, w) < e-l(h-l(w)) or dist( g-lfg(x), h(x))  < e'(h(- l (x)))  = 
E'(x). This completes the proof. 

We will now complete the proof of Theorem 4.11.1 by giving a 
proof of Lemma 4.11.2. The proof employs a trick of Stallings which 
we have already used several times in this chapter. In  carrying out the 
trick we will use Corollaries 4.10.1 and 4,10.2 of the previous section. 

Ork - Ork By A,  < 1 1  g-lfg(x)ll - 1 1  h ( x ) l I  < and by B, 

Proof of Lemma 4.11.2. Let T be an arbitrary (rectilinear) triangu- 
lation of En and let Tl be a subdivision of T such that if z, is a simplex 
of Tl which intersects g(O,+,) and x, y E ZJ C En, then dist( g-'(x), 
g-l(y)) < e / 3  and O{g-'(x), g-'(y)} < ~ / 3 .  Let J be the simplicia1 
neighborhood (in Tl)  of g((,42/3)cO) n (Cl(00+(2,3),))) and let J 2  be 
the 2-skeleton of J.  

Now n - dim J z  5 - 2 = 3, and so by Corollary 4.10.1 there 
is a PL homeomorphism h,: En - En such that h, I g(Oa-.(c/3)) = 1, 

x E En. 
Let L be the subcomplex of the first barycentric subdivision of J which 

is maximal with respect to the property of not intersecting J2.  Now 
dim L = n - (dim J z  + 1 )  = n - 3 and so by Corollary 4.10.2, there 
is a PL homeomorphism h,: En --H En such that h, I g(a+(a/3)0) = 1, 

all x E En. 
If A is an n-simplex of J ,  A is the join of A n J 2  and A n L and 

A n J 2  C hl( g(0,)) and A n L C h,( g(Cl(,O))). Thus by pushing up 
this join structure in each simplex of J ,  we obtain a homeomorphism 
h,: En - En such that h, I g(O,-,) = 1, h, 1 g(*+,O) = 1, for each 
n-simplex u of J ,  h,(g(O,)) u h,h,(g(Cl(,O)) 3 u, and for each simplex 

h1 I &+D) = 1, hl(g(0,)) 3 J 2  and e{g-l(hi(x)), g-'(x)} < ~ / 3  for all 

h, I g(0,-J = 1, h,( g(Cl(,O))) 3 L, and g-1@2(4, g-'(.)} < 4 3  for 
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a of T I ,  h3(v) = v .  The triangulation Tl was chosen fine enough that 
h3(v) = v implies O{g-lh,(x), g-l(x)} < ~ / 3  for all x E En. 

Let h4 = h,h, . We will show that h,(g(O,)) u l ~ ~ ( g ( ~ O ) )  = En. 
Now h, was chosen so that h,(g(O,)) u l ~ ~ ( g ( ~ O ) )  3 J and since 

remains to show that h,h,(bO) 3 En - g(Ob+(2/3)r) .  Let v be a simplex 
of Tl in En - g(b+(2/3)fo). Then, "Cg(b+(&)O) and thush, 1 ZI = 1. Since 
h3(v) = ZI, h,h,(v) = v and therefore h,h,( g ( b 0 ) )  3 v .  This shows that 
hl(g(oa)) h4(g(b0)) = En. 

h, I g(Oa-(c/3)) = 1, it clearly contains g(Oa-(c/3)) U J 3 d 0 b + ( 2 / 3 ) r ) *  It 

This gives hl( g ( 0 , ) )  3 h4( g(En - b o ) )  which implies 

h;'h,(g(O,)) 3 En - bO = 0,. 

Let f* = ha'h, , and note that f* I g(o,- , )  = 1, f* I g(b+,O) = 1 and 
d{g- l ( f*(x) ) ,  g-'(x)} < E and that f* is a PL homeomorphism. Thus, 
f* satisfies the conclusion of the lemma. 

Some of the exercises and remarks which follow establish Diagram 
4.11.1 for homeomorphisms of En. 

Stable 

4.1 1.4 - - Bounded 

Obvious 

Diagram 4.11.1 

Isotopic 
to the identity 

EXERCISE 4.1 1.2. Show that every homeomorphism of In onto itself which 
restricts to the identity on aIn, is isotopic to the identity. (This was first proved 
in [Alexander, 41. For a generalization of this result see [Rushing, 91.) 

EXERCISE 4.11.3. Show that every stable homeomorphism of Sn and En is 
isotopic to the identity. (Hint: Use Exercise 4.1 1.2.) 

EXERCISE 4.1 1.4. Show that every bounded homeomorphism of En is isotopic 
to the identity. (Hint: This isotopy is similar to the one of Exercise 4.11.2) 
(This result was first proved in Theorem 1 of [Kister, 11.) 
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EXERCISE 4.11.5. Show that bounded homeomorphisms of En are stable. 
(This was first shown in Lemma 5 of [Connell, I].) 

EXERCISE 4.1 1.6. Suppose that g and h are homeomorphisms from En onto 
itself such that for some M > 0, dist(g(x), h(x)) < M for x E En. Then if g is 
stable, h is also stable. (Hint: Use Exercise 4.11.5.) (This was first proved in 
Theorem 5 of [Connell, 11.) 

REMARK 4.1 1.1. In [Kirby, 31 it was announced that a homeomorphism of 
En which is isotopic to the identity is stable. Later, as mentioned at the first 
of this section, it was announced in [Kirby et al., 11 that every (orientation 
preserving) homeomorphism of En, IZ 3 5 ,  is stable. 

REMARK 4.1 1.2. It should be pointed out that the analog of Theorem 4.11.1 
for Sn is established in [Connell, 11. 

4.12. TOPOLOGICAL ENG ULFl N G  

T h e  first engulfing theorem for topological manifolds was given in 
[Newman, 21, and it was proved by methods which do not depend on the 
theory of PL  manifolds. A weaker topological engulfing theorem was 
independently proved by Connell [2]. Connell’s proof did use P L  
theory. In  fact, it is fair to say that the main idea of Connell’s proof is 
to use the techniques of PL engulfing locally. Connell did not seem to 
worry about getting the most general topological engulfing theorem 
possible, but was only interested in obtaining a theorem sufficient to 
prove a certain topological H-cobordism theorem and the topological 
PoincarC theorem. (These results will be discussed in the next section.) 
Another topological engulfing theorem is proved in [Lees, 21. In  this 
section we will adapt Connell’s techniques to prove a topological 
engulfing theorem which would be the topological analog of Stallings’ 
(PL) Engulfing Theorem 4.2.1 if the monotonic t-connectivity hypo- 
thesis (which we are about to define) were replaced by a r-connectivity 
hypothesis. 

The  pair ( M ,  U) is monotonically r-connected if given any compact 
subset C,  of U,  there exists a closed (re1 M ) ,  proper subset C,  of U 
containing C,  such that ( M  - C,  , U - C,) is r-connected. 

Topological Engulfing Theorem 4.12.1. Let M n  be a connected topo- 
logical n-manifold without boundary, U an open set in Mn, Pk, k < n - 3 ,  
a possibly noncompact polyhedron, f: Pk -+ M a closed, locally tame 
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embedding, and Q a (possibly noncompact) subpolyhedron of Pk such that 
f(Q) C U and R = CI(P - Q )  is a compact r-subpolyhedron of P.  Let 
( M ,  U )  be monotonically r-connected. Then, given any compact subset C 
of U ,  there is a compact set E C Mn and an ambient isotopy e ,  of M n  such 
that f ( P )  C el( U )  and 

e, l(M - E )  uf(Q) u C = 1 l(M - E )  uf(Q) u C. 

Recall that in Section 3.6, we defined an embedding f: Pk -+ Mn of the 
(possibly infinite) K-polyhedron Pk into the interior of the topological 
n-manifold Mn to be locally tame if there is a triangulation of Pk such 
that for each point x E Pk there is an open neighborhood U off (x) in Mn 
and a homeomorphism h,: U + En such that h,  f is PL on some neigh- 
borhood of x. [Without loss of generality, we may assume that h,f is 
PL onf-l( U n f (P)) and we will do so in this section.] 

Proof of Theorem 4.12.1. In  order to make the proof more trans- 
parent, we will give the proof for the case m < n - 4. The  case 
m = n - 3 contains an added difficulty similar to the one encountered 
in the proof of Stallings' engulfing theorem 4.2.1 in that case. This 
difficulty may be handled in a way completely analogous to the way the 
problem was handled in the proof of Stallings' engulfing theorem or 
alternately the way this problem was handled in the section on radial 
engulfing (see note at end of Case 1). 

Without loss of generality we may assume that C n f (R) = 0 and that 
there is a closed proper subset C,  of U containing C such that 
( M  - C, , U - C,) is r-connected and such that C, n f (R)  = 0. 

M /  
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Let h: R x I -+ M - C be a continuous function satisfying 

(a) h(x, 1) = f ( x )  for x E R, 
(b) h(x,  t )  = f ( x )  for x E Q n R and t E [0, I], 
(c) h(x,  0) E U for x E R. 

Such an h exists because 

Ta(M - c,, u - C,) = 0, i = 1, 2, ..., Y. 

Sincef(Pk) n h(R x I )  is compact and since f is locally tame there 
are compact subpolyhedra X, C Pk, i = 1, ..., u, and sets U, C M - C, 
i = 1, ..., u, and homeomorphisms hu,: U,  - En such that 
h U i f ) f - l ( U i  nf(P)) is PL and U r l  Int Xi 3 f ( P k )  n h(R x I ) ,  where 
Int X ,  denotes point-set interior of Xi relative to Pk.  Let 6 > 0 be such 
that 

~ , , V ( ~ i ) ,  M )  c ui 
i = I ,  ..., v. Let hut: Ui - En, i = v + 1, v + 2, ..., w be homeo- 
morphisms where the U, are open subsets of M - C such that 

W 

(J ui 3 h(R x I ) .  
i=l 

Let K be a triangulation of P, with L, and L the induced triangulations 
of Q and R,  such that f is an a simplicia1 homeomorphism on K. Let 

0 = to < t ,  < < t, = 1 be a partition of [0, 11. If the triangulation 
K and the partition to < t ,  < < t, are fine enough, then 
h: I L I x I --f M will satisfy Property P below. 

u1 k k  , u2 , ..., &k) be the A-simplexes of L for i = 0, 1, ..., Y. Finally, let 

Definition. A continuous function h: j L j x I -+ M - C has 

(1) h(x, 1) = f ( x )  for x E IL 1, 
(2) h((lL1 I n I L I )  x 10, 11) c u - c, 
(?) h(umk x [t,-,, t,]) C U, for some i = i ( A ,  m, a) when 0 < k < 

(4) uLl Int xi 3 f ( ~ k )  n h ( ~  x I ) ,  
( 5 )  diam(h(umk x [t,-, , t,]) < 6 for 0 < k < r ,  1 < m < q(A) and 

Now suppose that the triangulation K and the partition to < t ,  < 
< t, , are given so that h satisfies Property P. For the remainder of 

Property P provided 

r ,  I < m < q(A) and I < a < a. 

l < a < v .  
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this proof, the simplexes omk, the partition to < t ,  < < t ,  and the 
function ( R ,  m, a)  --+ i(R, m, a )  are fixed. The  statement that 
a: 1 L 1 x I --+ M satisfies Property P means with respect to this fixed 
data. Notice that if a satisfies Property P and p: I L I x I --+ M has 
p(x, 1) = f ( x ,  I )  and p is a close enough approximation to a, then p will 
also satisfy Property P. 

Definition. For 

0 < k < r ,  

is defined by 

1 < m < p(k), 1 < a < v ,  X(k,  m, a) C ( 1  L 1 x I )  

X(k, m, a)  = IL I x 0 u (IL I n ILl I x [O, 11) 

u I L 1 x [O, ta-J u {UtS x [ta-l , t , ] :  s < k, 
u {utk x 

1 < t < q(s)} 

t , ] :  1 < t < m}. 
Inductive Hypothesis (k ,  m, a) = IH(k, m, a). There exists a con- 

tinuous function 

a(k.m,o,):  I L I x I ---t M - C,  

which satisjies Property P and a homeomorphism 

H ( k . m . a ) :  M +  M ,  

which can be realized by an ambient isotopy e ,  of Mn satisfying 

(1) For some compact subset E C M 

e t  I(M - E )  u f ( Q )  u C = 1 I(M - E )  u f ( Q )  u C, 

(2) H ( k . m , a ) ( U )  = e l (u)  a (k .m,a ) (X(k ,  ‘ 1 ) .  
The purpose of the proof is to show that I H ( r ,  q(r),  v )  is true. 
Fact 1. IH(0, 1, 1) is true. 
Fact 2. f H ( k ,  m - 1 ,  a) * f H ( k ,  m, a)  for 0 < k < Y ,  2 < m < q(k), 

1 < a < v .  

Fact 3.  IH(k ,  q(k),  a) 

Fact 4. IH(r,  q(r), a) * IH(0, 1, a + 1) for 1 < a < v. 
The proof of Fact 2 is presented in detail. The  proof of Facts 1,3, and 4 

I H ( k  + 1, 1, a)  for 0 < k < r ,  1 < a < O. 

require only trivial modifications and are not included. 
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Suppose0 < K < r , 2  < m < q(K), 1 < a < o,andIH(k, m - 1, u )  
is true. For simplicity of notation let 

H = H ( k , m - l , a ) :  M -+ M and (Y. = a ( k , m - l , a ) :  I L I X I -P - C2. 

Then, 01 has Property P and H can be realized by an ambient isotopy 
e, of Mn satisfying 

(1 )  For some compact subset E C M ,  

e, l(M - E )  uf(Q) u C = 1 l(M - E )  uf(Q) u C ,  

(2) H ( U )  = e,(U) 3f (Q)  u 4 X ( k ,  m - 1 ,  4). 
Proof of Fact 2 

Case 1. (01(cr,k x [ta- l ,  ta])  n f(P) = 8). Let W,,  W2 , W, be 
open subsets of M with u(amk x [ ta- , ,  ta]) E W, , C1(Wl) C W, , 
C1(W2) C W, , Cl(W,) C U$(k.m&) and W, n f ( P k )  = 8. Let 2 be a 
subpolyhedron of 1 L I x I with 01-1(W,) C 2 C a-l(W,). Now by a 
general position argument (see Part d of Section 1.6) there is a con- 
tinuous 

(Y.(k.m.a)  = p:  I I x I -  - c, 
which satisfies Property P and 

(1) B(Umk x [ t a - 1  , t a l l  c Wl 9 

(2) P-Y Wl) c a-y W2) c z, 
(3) p I a-yM - W,) = a 1 a-yM - W,), 

(4) hu,(k.m.o) p 1 2 is P L  and in general position. 

In  particular, if 

S = Cl{x E omk x [ta-l , ta] :  there is y E 2 

then 
addition, it is assumed that /3 approximates a closely enough that 

with x # y, P(x) = p(y)}, 

In  dim S < 2(r + I )  - n < (n - 4) + r + 2 - n = r - 2. 

H ( U )  3,.f(Q) u p(X(k ,  m - 1, a)). [See (2) above.] 

Let n: umk x [ t a - l ,  ta] + urnk be the projection. Since /3 has 
Property P, 

P(n(S) x [ta-l > t o ] )  Ui(k .m.a )  * 

Since gLli(L,m,a) P(T( S )  x [taP1 , ta])  is a polyhedron in En of dimension < 
r - 1, the inductive hypothesis on r may be applied. (Note that if 
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2(v + 1) < n, then no induction on r is necessary.) I n  applying the 
induction, 

(WW, c u B(X(k m - 1, a)), B ( 4 . 9  x [ta-1, tal) u f(QN 

( U ,  C , f ( W  
corresponds to 

Then, there is a homeomorphism G,: M ++ M which can be realized 
by an ambient isotopy e, satisfying 

(a) For some compact set E E M 

e, l(M - E )  u f(Q) c u P(X(k m - 1 , 4 )  
= 1 I(M - E )  uf(Q) u C u P(X(K, m - 1, a)). 

by Exercise 1.6.12, there is a homeomorphism G,: M --f M which can 
be realized by an ambient isotopy e ,  such that 

(A) e l (x )  = x for x E ( M  - W,) U f ( Q )  U C U ,Q(X(k, m - 1 ,  a)),  

(B) G,GiH(U) I f ( Q )  U ,Q(X(k  m, a)>* 

The  homeomorphism H ( k , m , a )  is given by 

H(k,m,a) and = ,Q satisfy IH(k ,  m, a). [Note: The  changes 
necessary for the case r = n - 3 are almost identical to the changes 
necessary in the PL case. The  inductive hypothesis IH(k,  m - 1 ,  a) 
would require covering only the m-skeleton of a ( k , m , a ) ( X ( k ,  m - 1, a)), 
that is, the (m + I)-cells need not be contained in H ( k , m - l , a )  (U) .  The  
singular set 5' would be defined by intersections of a(umk x [tu-l, t,]) 
with a(.??), where 2' is the r-skeleton of 2.1 

This case is similar to 
Case 1 except that we are sure to use a gUi where 1 < i < u. Note 
that Case 2 always holds when a = v. 

Case 2. (a(amk x [t,-, , ta]) n f(P) # 0). 
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Since "(omk x [ ta - l ,  ta]) n f ( P k )  # 0 it follows that for some 
i such that 1 < i < u, a(umk x [t,-l , ta]) nf(X,) # 0. But since 
Nza(f(X,), M )  C U, and diam(a(ukm x ta]) < 6 it follows that 

4 u m k  x Lta-1, tal) C N~(f(xi), M )  C ui a 

Let W, , W2 , W, be open subsets of M with 

x Pa-1 > tal) c Wl 9 C W l )  c w2 , Cl(W2) c w3 , 

and 
C1(W3) c u, . 

Let 2 be a subpolyhedron of I L I x I with 01-l(W2) C 2 C a-1(H'3). 
Since 1 < i < u, we have that h,, f I fl( U, n f ( P ) )  is PL and so by a 
relative general position approximation argument, there is a continuous 

a(k, rn, Q) = 13: 1 L 1 x I -+ M - C,  

which satisfies Property P and 

(1) 8(Umk x Lta-1 9 tan c H'l 7 

(2) 8-l( Wl) c 01-Y W2) c 2, 
(3) p 1 a-'(M - W,) = 01 I a - y m  - W3), 
(4) h,,P I 2: 2 + En is PL and in general position relative tof(Q). 

In particular, if S = Cl{x E umk x [ta-l , ta]: (there is a y E 2, y # x, 
p(x) = p(y))  or (there is w E Q - R with p ( x )  = f ( w ) ) )  then 

d i m s  < 2 ( r  + 1) - n < n - 4  + T + 2 - n = T - 2. 

The remainder of the proof is a repeat from Case 1. 

4.13. TOPOLOGICAL H-COBORDISMS A N D  THE 

TOPOLOGICAL POINCARE THEOREM 

This section is organized as follows: We first give a few definitions, 
next we state the main results, then we discuss these results and related 
work and finally we give the proofs. A cobordism of dimension n is a 
triple ( M ;  A, B)  where M is a compact (topological) n-manifold with 
boundary components A and B. A cobordism ( M ;  A, B)  is called an 
H-cobordism if A and B are deformation retracts of M. If ( M ;  A,  B) 
and ( N ;  B, C) are two cobordisms with a common boundary part B, we 
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define the composed cobordism ( M ;  A, B)  9 ( N ;  B, C) to be 
( M  u N ;  A,  C) where M V N is the union of M and N pasted together 
along B. The cobordism ( M ;  A, B)  is a product cobordism if 

(M, A ,  B )  = ( A  x [0, 11, A x 0, A x 1). 

The cobordism ( M ;  A,  B)  is invertible if there exists a cobordism 
( N ;  B, A )  so that the composed cobordisms ( M ;  A, B) - ( N ;  B, A )  and 
( N ;  B, A)  - ( M ;  A, B)  are product cobordisms (see Fig. 4.13.1). 

Figure 4.13.1 

Theorem 4.13.1. Let ( M ;  A,  B )  be a connected, n-dimensional, 
n 2 5, (topological) cobordism such that z-<(M, A )  = z-$(M, B)  = 0 for 
i = 1, 2,  ..., n - 3. Let 

and 
g,: A x [O, 13 - M - B 

g B :  B X [O,1] + M - A 

be embeddings with g,(x, 0 )  = x for all x E A and gB(y,  0 )  = y for y E B 
such that g , (A  x [0, 11) n gB(B x [0, 11) = 8. Then, Zjc b is a number, 
0 < b < 1 ,  there exist homeomorphisms f,: M + M and fB: M -+ M 
such that 

fA I g,(A x [O, 1 - 4 )  u g,(B x [O, 1 - bl) = 1, 

fB 1 g A ( A  x [O, 1 - 6]) x [o, 1 - b ] )  == 1 ,  
and 

Also, there is a homeomorphism H :  g,(A x [0, 1)) - M - B. 

REMARK 4.13.1. The embeddings g ,  and g, in the hypothesis of Theorem 
4.13.1 always exist by Theorem 1.7.4. 

REMARK 4.13.2. The f A  and f ,  will actually be constructed so that they are 
isotopic to the identity. 

Corollary 4.13.1 (Weak H-cobordism theorem). 
n-dimensional (topological) H-cobordism, n 3 5 ,  then 

If ( M ;  A, B)  is an 

M - B = A x [0, 1 ) .  
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Corollary 4.13.2 (Topological PoincarC theorem). If Y is a compact 
5, without boundary, which has the laomotopy topological n-manifold, n 

type of S", then Y is homeomorphic to S". 

Corollary 4.13.3. For n 5, every n-dimensional (topological) 
H-cobordism ( M ;  A,  B )  is invertible. 

I t  is shown in [Stallings, I], Theorem 4, that in the case that the M 
of Corollary 4.13.1. is a P L  manifold, one can conclude that 
M - B 2 A x [0, 1). The, now classical, H - c o b o r d i s m  theorem 
states that if ( M ;  A,  B )  is an H-cobordism of dimension greater than 5 
such that M is a P L  manifold and such that A and B are simply con- 
nected, then M is PL homeomorphic to A x [0, I] and (consequently) 
A is P L  homeomorphic to B. This was first proved by Smale [ l ,  21 in the 
differential category and another good proof appears in [Milnor, 21. 
If one omits the restriction that A and B be simply connected, the 
theorem becomes false (see [Milnor, I]). But it will remain true if we at 
the same time assume that the inclusion of A (or B)  into M is a simple 
homotopy equivalence in the sense of Whitehead. This generalization, 
called the s - c o b o r d i s m  theorem, is due to Mazur [3], Barden [I], and 
Stallings. 

The  remainder of this section is based primarily on [Connell, 21. 
For other work related to this section see [Lees, 11, [Stallings, I], 
[Newman, 21, and [Siebenmann, 11. (The proof of Corollary 4.13.3 given 
here appears in [Lees, I]  and is implied in [Siebenmann, 11.) 

Before proving the theorem, let us prove the corollaries. Of course, 
Corollary 4.13.1 is immediate. 

Proof of Corollary 4.13.2. Let B" and B," be disjoint, locally 
flat topological n-cells in Y and p E Int Bln. Then, Y - BIn is homeo- 
morphic to Y - p by Corollary 1.8.2. It follows from Corollary 4.13.1 
and the fact that 

Y - (Int Bn u Int B,") 

is a topological H-cobordism (see Exercise 4.13.1) that Y - Bln is 
homeomorphic to En. Thus, Y - p is homeomorphic to En and Y is 
homeomorphic to 5'". 

Show that Y - (Int Bn u Int B,") in the above proof is 
indeed a topological H-cobordism. 

Proof of Corollary 4.13.3. 

EXERCISE 4.13.1. 

(This proof is taken from Theorem 2 
of [Lees, 11.)  By Theorem 4.13.1 there are embeddings 

h A :  A x [0, 21 4 M - B 
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and 

with h,(x, 0) = x for all x E A and hB(x, 0)  = x for all x E B such that 
h,(A x [0, 1)) u hB(B X [0, 1)) = M .  Let N ,  = h,(A X [0, 11) and 
N ,  = h,(B x [0, 11). Let M' = N ,  n N B  . Then, 

h,: B x [0, 21 -+ M - A 

( M ' ;  FrM(NB), FrM(NA)) 

is an h-cobordism. (Fr, Y denotes the frontier of Y relative to X ,  see 
Fig. 4.13.2). Note that Bd M' = FrM(NB) U FrM(NA) M A U B. 

2 , M  

A B 

NB 

Figure 413.2 

Now, 
M' u ~ ~ ( B ) M  w M' U ( M  - NA) NB M B x [0, 13 

and 
M' u ~ ~ ( A $ V  M M' u ( M  - NB) M NA w A x [0, 11. 

Before proving Theorem 4.13.1, let us establish a couple of preli- 
minary lemmas. 

Engulfing Lemma 4.13.1. Let ( M ;  A ,  B)  be a connected, n-dimensional 
n 2 5, (topological) cobordism such that .rri(M, A)  = .rri(M, B)  = 0 for 
i = 1, 2, ..., n - 3. Letg,: A x [0, 13 -+ M - B be an embedding with 
g,(x, 0) = x for all x E A. Suppose K C En is a compact k-polyhedron, 
k < n - 3, h: En + Int M is a topological embedding, and E is a number 
with 0 < E < 1. Then, there is a homeomorphism H :  M -+ M satisfying 

(1) H ( x )  = x for x E B V g,(A x [0, 1 - E ] ) ,  and 

(2) H ( g a ( A  x [O, 1))) ' h(K)*  

PROOF. This lemma follows by applying Theorem 4.12.1, where 

[ M  - (g,(A x LO, 1 - €1 u B), WW) - (h(K) r7 g,(A x LO, 1 - El))) ,  

h I(h-'(h(K) - ( 4 K )  n g,(A x [O, 1 - .I)))), g,(A x (1  - € 9  1))1 
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corresponds to ( M ,  P k , f ,  u)  of that theorem. The  collar structure very 
easily gives the required monotonic connectivity (see Fig. 4.13.3). 

I I I I 
I I 

\ / 

Figure 4.13.3 

Lemma 4.13.2. Let ( M ;  A ,  B )  be a connected, n-dimensional, 
n 3 5, (topological) cobordism such that .rri(M, A )  = .rri(M, B)  = 0 for 
i = 1, 2, ..., n - 3. Let 

g,: A x [0, 11 - M - B and g B :  B x [0, I ]  --f M - A 

be embeddings with g,(x, 0) = x for all x E A and gB(y,  0)  = y for all 
y E B. Suppose b is a number with 0 < b < 1, 

and h: En - Int M is a topological embedding. Then, for any number a 
with 0 < a < b, there are homeomorphisms fA: M -+ M and f B :  M + M 
with 

fA 1 g,(A x [o? 1 - a]) u g B ( B  x [o, 1 - b ] )  = 1, 

f B  I g B ( B  x [o, 1 - a]) u g A ( A  x [o, 1 - b ] )  = 1, 

and 

f & d A  x 10, 1 )) u f B g B ( B  X [o, 1)) 3 h(1"). 

PROOF. Let T be a triangulation of En which triangulates In as a 
subcomplex. Let X be the subcomplex of T composed o f  all closed 
simplexes ~7 C In with 

4 0 )  n ( M  - k , ( A  x 10, 1 - UP])  u g B ( B  x 10, 1 - a/2])]> # 0 
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and let Y be the simplicia1 neighborhood of X in T (in all of En). Suppose 
that the triangulation T is fine enough that 

h ( Y )  { M  - [/?,(A x [o, 1 - 3a/41 u gB(B x [o, 1 - 3a/4])]} 

(see Fig. 4.13.4). 

\ 
. ,--- , 

/ 

/’ 
/ 

’ @  I I \ \ I 

\ 
\ 

\,En 
\ 

/ 
/ 

/ 
/ 

Figure 4.13.4 

Let A > 0 be such that 

N3Ll(h(X)r c h ( Y )  

NA(gA(A X 10, 1 - a/21), M )  C g,(A x [O,  1 - 441). 
and 

Let T,  be a subdivision of T such that for any simplex u1 of T,  , 
diam(h(u,)) < A .  Let X, and Y ,  be the sets X and Y under the trian- 
gulation T, . Let K be the (n - 3)-skeleton of Y,  and K ,  be the maximal 
complex of a first derived of Y ,  which does not intersect K. Then, 
dim K ,  < n - 3. Now apply Lemma 4.13.1 to the H-cobordism 
M - gB(B X [0, 1 - b])  and obtain a homeomorphism 

f~’: M - gB(B X [O, I - b) )  4 M - gB(B X [O, 1 - b ) )  

such that fA’(x) = x for x €gB(B x (1 - b))  U gA(A x [0, 1 - a/4]) 
and 

f A ’ k A ( A  x [O, 1))) 3 W). 
Extend fA’ to M by the identity ong,(B x [0, 1 - b]) .  In  the same manner, 
apply Lemma 4.13.1 to the H-cobordism M - g,(A x [0, 1 - b) )  and 
obtain a homeomorphism fB: M 4 M satisfying 

(1) f,(x) = x for x E g,(A x [0, 1 - 61) u gB(B x [0, 1 - a/4]), 
(2) fB(gdB Lo, I))) h(K*)- 
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Statement A. 

(a) f A ( x )  = x for x E M - h( Yl)  3 gA(A x [0, 1 - 3a/4]) 
u g ~ ( B  x [o, 1 - 3a/4]), 

dist( fA(x ) ,  x) < d for any x E M. 

There exists a homeomorphism f:: M -+ M such that 

(b) f : f A ’ ( g A ( A  [O, l))) ” f B ( g d B  [O, l))) ’ h(Xl) ,  

(c) 

Statement B. The proof of Lemma 4.13.2 is completed by setting 
f A  = f A f A ’ *  

Proof of Statement B Assuming Statement A. It must be shown 
that if p E 1% then 

h ( p )  E f i f A ’ ( g A ( A  x [o, 1))) f B ( g d B  x [o, 1))). 

If p E X , ,  then this follows from Statement A (b). Now suppose 
p E I” - X ,  . Then it follows from the definition of X that 

h ( p )  g A ( A  x [o, 1 - a/2] )  u g B ( B  x [o, 1 - a/2] )*  

Case 1. (h( p )  EgB(B x [O, 1 - a/2]).) Since 

fB I g B P  x [O, 1 - 421) = 1, 

it follows that 
h ( p )  E f B ( g B ( B  x i0, 1))) 

and this case is immediate. 

Case 2. (h( p )  E gA(A x [0, 1 - a/2]).) The sequence of facts 

(a) 
(b) 

f A ’  1 ga(A x [O, 1 - a/4]) = 1. 
Nd(gA(A x [O, 1 - a/2]), M )  cgA(A X [O, 1 - a/41), and 

(c) dist(fl(x), x) < d for x E M 

imply that h( p )  €fJfA’( g,(A x [0, 1))). This completes the proof of 
Statement B. 

Proof of Statement A. This proof is just an application of what 
has now become the old familiar trick of Stallings first given in the proof 
of Theorem 4.4.1. (This is the fifth time that we have used this trick 
in this chapter, for it was used in the proof of Theorem 4.4.1, Lemma 
4.5.5, Theorem 4.8.1 and Lemma 4.11.2. We will use it again in Section 
5.2.) 
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Proof of Theorem 4.13.1. 
a topological embedding with 

Let each of h, , h, , ..., h,: En -+ Int  M be 

INDUCTIVE HYPOTHESIS (i) = IH(i), i = 1, 2, ..., k. There exist 
homeomorphisms f A i  and fBi: M + M such that each of f A i  and f B i  
restricted to 

g A ( A  [O, - bl) g d B  x [o, - b ] )  

equals the identity, and 

f A i ( g A ( A  [O, l))) u f B i ( g B ( B  x [o, 1))) u 
l < t < i  

The  proof involves showing IH(k) is true and setting f A  = f A k  and 
f B  = f B k .  IH(1) follows immediately from Lemma 4.13.2. Suppose IH(i) 
is true for some i, 1 < i < k, and show IH(i + 1) true. The  collars of 
Lemma 4.13.2 will be 

f A i g A ( A  X [O, 11) C M - g B ( B  X [O, 1 - b ] )  = M - f B i g g ( B  X [O, 1 - 61) 

and 

The  induction is completed by setting 

fi+' OLA fAi: M -+ M and .fk+' = a B f 2 :  M + M .  

This completes the proof of the first part of Theorem 4.13.1. 
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Note that f;lfA: M -+ M satisfies 

f B Y A  I g,(A x [O, 1 - 4) = 1 

fBlfA(BA(A x [O, 1))) u g,(B x [O, 1)) = M .  

and 

Thus, the existence of the homeomorphism H :  g A ( A  x [0, 1)) -+ M - B 
follows by making a countable number of applications of the first part 
of the theorem. 

EXERCISE 4.13.2. Show how to rigorously define the homeomorphism H 
just mentioned. 

4.14. INFINITE ENGULFING 

Upon a moment’s reflection, one sees that the direct analog of Stallings’ 
Engulfing Theorem 4.2.1 does not hold for infinite polyhedra. For 
instance, if we take the ambient manifold Mn to be E4 and the open set U 
to be the open unit ball in E4, then we cannot engulf E: with U. However, 
engulfing theorems for infinite polyhedra can be proved. In  particular, 
Cernavskii [5 ,  61 established specialized engulfing theorems for infinite 
polyhedra and used them to prove some very interesting results. The 
purpose of this section is to prove a corollary (Theorem 4.14.1) of a 
general infinite engulfing theorem stated at the end of this section. 
A special case of Theorem 4.14.1 will suffice for our development in 
Section 5.2 of a version of some work of Cernavskii. (We will also 
mention in Section 5.2 another result of Cernavskii which requires 
the more general infinite engulfing theorem stated at the end of this 
section.) Although the statement of Theorem 4.14.1 is more general 
than Lemma 4.1 of [Cantrell and Lacher, I], the proof of Theorem 
4.14.1 given here follows their modificationof techniquesof [Cernavskii, 61 
very closely. After noticing that Cantrell and Lacher’s proof generalized 
to prove Theorem 4.14.1, we saw how to construct a classical type 
proof, which uses Theorem 4.14.1, of a generalization (Theorem 
4.14.2) of “the basic lemma” of [Cernavskii, 61. 

Before stating our first infinite engulfing theorem, let us make a couple 
of definitions. Let P and U be subspaces of a metric space M .  Then we 
say that P tends to U if given E > 0 there is a compact subset C of P 
such that dist(x, U )  < E for any x E P - C. We will call a manifold M 
uniformly locally p-connected (p-ULC) if given E > 0 there is a 
6 > 0 for which every mappingf: S P  -+ M such that diamf(SP) < 6 is 
null-homotopic through a homotopy whose track has diameter less than E. 
If M is p-ULC for 0 < p < K, then we say that M is ULC”. 
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Weak Infinite Engulfing Theorem 4.14.1. Let Mn be connected PL 
n-manifold without boundary, U an open set in M ,  Pk a (possibly injinite) 
polyhedron of dimension k at most n - 3 which is contained in Mn ( P  not 
necessarily closed in M") and Q C U a (possibly infinite) polyhedron of 
dimension at most n - 3 such that (Q - Q )  n P = 8 and 
( P  - P )  n Q = 8. We let z denote a closed subset of M - ( P  u Q )  
containing ( P  - P )  v ( Q  - Q).  Suppose that P tends to U ,  that U - % 
is ULCk-l and that M n  - is ULCk .  Then, given a compact subset C 
of P and given 6 > 0, there exists an ambient +isotopy e, of Mn such that 
e, = 1, such that 

e,  I(M - N,(P - C, M ) )  u Q = 1 I(M - N,(P - C,  M ) )  U Q 

and such that el( U )  contains all of P except some compact subset. Further- 
more, for each 6 > 0, there exists a compact subset K of M - % such that 
e, I M - K is a &isotopy. (See Fig. 4.14.1 ,) 
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Figure 4.14.1 

By using the above infinite engulfing theorem and Stallings' engulfing 
theorem, we easily obtain the following corollary. 

Corollary 4.14.1. Assume the hypotheses of the previous theorem 
and in addition assume that the pair ( M  - z), U - z) is k-connected. 
Then, there is an ambient isotopy el of M such that P C e,(U) and 
e, I Q = 1 I Q. Furthermore, for each 6 > 0, there exists a compact subset 
K of M - z such that el 1 M - K is a 8-isotopy. 

REMARK 4.14.1. Note that ( P  - P) u (Q - Q) is a closed subset of U 
because P and Q have locally finite triangulations. 

Proof of Theorem 4.14.1. The proof of the theorem will be by 
induction on k, the dimension of P. 
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In the case k = 0, P i s  a countable set of points. Let P = {xl , x2 , ...}. 
(Ignore points of P on Q.) Notice that dist(x, , U )  tends to zero as i 
increases. It is easy to construct a sequence J1, J2 , ... of polygonal 
arcs such that 

(1) 
sects Q, 

(2) 
(3) 

The Ji are pairwise disjoint and all lie in M - ;;F;: no Ji inter- 

One end-point of Ji is xi and the other lies in U, and 
diam Ji -+ 0 as i -+ co. 

(By our codimension restriction, n 3 3, and so (1) is possible by general 
position.) Let j be an integer such that diam Ji < €12 and xi $ C when- 
ever i > j ;  and for each i > j ,  let Ni be a regular neighborhood of Ji 
such that diam Ni < 2 diam Ji . The Ni are chosen pairwise disjoint, 
and each Ni is in M - (g u Q). For each i > j there is an t-homeo- 
morphism hi of Ni onto itself which is the identity on Bd Ni and which 
maps Ni n U onto a set which contains xi . Since diam Ni -0 as 
i + CQ, we define h to be hi on Ni for i > j ,  and let h be the identity 
otherwise. 

T o  do the inductive step, we assume Theorem 4.14.1 for k < p < 
n - 3 and show that Theorem 4.14.1 is true for k = p. The  inductive 
step is much more complicated than the above argument for k = 0; 
however, the ideas are essentially the same. We use standard engulfing 
techniques, and are able to engulf infinitely many simplexes one at a 
time by using a method similar to the above one. 

In  beginning the proof of Theorem 4.14.1 for the case k = p, we are 
given P p ,  Q, U ,  C and E > 0. Let T be a triangulation of P u Q such 
that any simplex of T which intersects Q lies in U.  (We may also assume 
that the diameters of the simplexes of T tend to 0.) Now apply our 
inductive assumption for k = p - 1 where 

( U ,  I P-' 1 ,  Q u {a E T 1 u C U } ,  ~ / 4 )  

corresponds to ( U ,  P, Q, c). Then, by induction there exists an €14- 
isotopy el1 of M such that eol = 1, such that 

etl  j(M - Ne,4(/ Tp-l I - C, M )  u Q u (0  E TI u C U }  = 1 

and such that el1( U )  contains all of 1 Tp-l I except some compact subset. 
Also, for each 6 > 0, there exists a compact subset K of M - 
such that el1 I M - K is a &isotopy. Moreover, any simplex of T which 
intersects Q must lie in el1( U).  

Let ul, u 2 ,  ... be the p-simplexes of T which do not lie in e,l(U). 
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No ‘ui intersects Q. By “throwing away” a finite number of simplexes of 
T,  we can assume that, for each i, Bd u, C el1( U )  and that u, n C = (3. 

Consider M x [0, 11 and identify M with M x 0 (see Fig. 4.14.2). 
For each i, let vi E 6, x [0, 11, where 6, is the barycenter of uJi . Let 
A ,  = a, * vi , the join of ui and vi in u, x [0, I]. The  v, are chosen so 

Figure 4.14.2 

that the d, are ( p  + 1)-simplexes with diameters tending to zero as i 
increases. (This is not necessary, but it makes a good picture.) Notice 
that the sets A ,  - u, are pairwise disjoint. 

Let X be the polyhedron P U Q v (J& A , .  We want to find a 
PL map f of X into M - 

(1) f I P u Q = inclusion 
(2) f ( v ,  * Bd u,) C el1( U )  for large i, and 
(3) diamf(d,) + 0 as i + 00. 

with the following properties: 

I t  is easy to construct f by letting f be the inclusion on P v Q and 
extending f first over each vi * Bd u, and then over each d, , In  extending 
f we use the fact that e,l(U - g) is ULCkU1 and that M - is 
ULCk. By applying Theorem 1.6.11 we may throw f into general 
position staying fixed on P v Q. 

Suppose first that p < n - 4, and let S(f) denote the singular set of 
f as a map of X into M. Let & ( f )  = S(f) n A i ,  and let Z, be the 
union of all line segments in d, which intersect S , ( f )  and are perpendi- 
cular to ui . Then, dim S ( f )  < p - 2, so that dim Z, < p - 1. Hence, 
we can apply the inductive assumption to engulf the f ( 2 , )  by letting 

spond to ( U ,  P, Q, E ) .  I t  follows that there is an ~/4-isotopy e l 2  of M such 
that eo2 = 1, such that e? I Q = 1 and such that el2eI1( U )  contains a11 
but a finite part of I Tp-l I U ui ( f ( 2 , ) )  V {a E T I u C el1( U ) }  V 

(el1( u), u i f ( Z i ) ,  (0 E T I C ell(U)} v f(vi * Bd 4 1 a r g e  , 44) corre- 



218 4. Engulfing and Applications 

f(v,  * Bd ui)ilarge . Again by “throwing away” a few simplexes of T I P if 
necessary, we may assume that e12e11( U )  contains all of Q u 1 T p - l  1 u 
ui ( f (Z , ) ) .  If in obtaining e? we do not worry about engulfing thef(Z,) 
corresponding to simplexes ui which hit C and we only engulf f ( Zi) of 
small diameter, then e? has the additional property that e t  1 M - Nc/2 
(P - C, M )  = 1. Finally, e? has the property that for any 6 > 0 there 
is a compact subset K of M -  such that e t  I M - K is a &isotopy. 

For each i ,  choose a regular neighborhood N, of Zi u vi * Bd u, in A, 
such that f ( N , )  C e12e11( U )  and such that Ai collapses to Ni . Since Ni 
is a neighborhood of S,(f) ,  f(A,) collapses to f ( N i ) .  Moreover, we 
can find open sets U, in M - ;;;; such that diam U, -+ 0 and 
Ui n U, = 0 for i # j ,  and such thatf(Cl(A, - N,))  C U, , Since the 
collapse off(A,) ontof(N,) takes place in Ui , we can use Exercise 1.6.12 
to expand Ui n e12e11( U )  in U, to containf(A,) without moving points 
outside of Ui , in such a way that the image of U,  n e,2e11( U )  contains 
P u Q uf(A,). Let e t  be the isotopy which is the composition of these 
moves, except do not include those corresponding to integers i for which 
diam U, > ~ / 4 .  Let el = e?e?e,l. I t  is easily verified that e, is the desired 
isotopy. 

Now consider the casep = n - 3.  If we construct Z, as before, then 
the best estimate for dim Zi by general position is dim Zc < n - 3 so 
that the inductive hypothesis does not apply. However, the following 
lemma is exactly what is needed. 

Infinite Piping Lemma 4.14.1. For each i ,  there exists a map 
3,: A ,  -+ M - Z, homotopic to fi Keeping ui u vi * Bd ui fixed and a 
subpolyhedron Ji C A,, such that 

(1) I f f  U,h then Si(.f) C Ji 9 

( 2 )  
( 3 )  A, collapses to arbitrarily small regular neighborhoods of 

(4) 

I t  is easy to complete the proof of Theorem 4.14.1 using piping 
Lemma 4.14.1 by essentially following along the proof of the previous 
case p 6 n - 4. 

REMARK 4.14.2. 

dim Ji < n - 4, 

v, * Bd ai u J ,  in A,,  and 

diam(Ji( J,)) + 0 as i -+ 00. 

Recall that an intuitive discussion of piping was given in 
the proof of Lemma 4.6.1. A rigorous development of finite piping is given in 
[Zeeman, I]. The only difference in proving piping Lemma 4.14.1 and the 
finite piping lemma occurs when one attempts to construct all of the pipes. In 
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the finite case all of the pipes can be constructed simultaneously, however, in the 
infinite case we have to construct the pipes in stages, corresponding to the 
sets A i  . One should note that the singularities of j which are formed by an 
intersection off(Ai - oi) with P u Q lie in the (n - 5)-skeleton of some trian- 
gulation of S,(J), so that there is no need to “pipe” around singularities of this 
type. A more general infinite piping Lemma than the above is given in 
[Rushing, 101. 

Before stating the next infinite engulfing theorem which is proved in 
[Rushing, 101 and which is mentioned at  the beginning of this section, 
let us make a definition. 

Let Mn be a PL n-manifold, U an open subset of M ,  and P k  an  
infinite polyhedron in M .  We say that most of P can be pulled 
through M into U by a short homotopy H :  (P - A)  x I + M ,  
C1 A a compact subset of P, if 

(1) H(p,O)=p f o r a l l p E P - A .  

(2) 
(3) given E > 0, there is a compact set B C P such that 

H(p, 1) E U for all p E P - A, and 

diam(H(p x I)) < E for all p E P - B. 

Strong Infinite Engulfing Theorem 4.14.2. Suppose M ,  U,  P, 
Q and are deJined as in Theorem 4.14.1 except this time only assume that 

but also assume that most of Pk can be pulled through M - ; into U - ; 
by a short homotopy. Then, most of Pk can be engulfed by U in the sense of 
the conclusion of Theorem 4.14.1. 

M - ; is ULCmax(k,~)+k-n+:! and that u - g is ULCmax(k ,y)+k-n+l  

REMARK 4.14.3. Bing noticed that Cernavskii’s basic engulfing lemma can 
be improved by one codimension (see Remark 4 of [Bing, 111). When we 
questioned him about this, he communicated a clever technique of proof which 
involves building a “more sophisticated shadow.” It turns out that his technique 
will suffice to replace infinite piping in our proof of Theorem 4.12.2. 

REMARK 4.14.4. The proof of Theorem 4.14.1 could be performed in a more 
classical way by constructing a short homotopy rather than the mapping of the 
di’s given. However we preferred to follow the proof of Lemma 4.1 of [Cantrell 
and Lacher, I ]  as closely as possible to show that our proof is a direct adaptation 
of their proof. 
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Taming and PL 
Approximating Embeddings 

5.1. INTRODUCTION 

Some important recent developments in the area of topological 
embeddings are presented in this last chapter. Also, many references 
are given to related work appearing in the literature. (See, for instance, 
the opening remarks of Sections 5.4-5.6.) Section 5.2 is devoted to the 
development of, and applications of, a straightening technique due 
to Cernavskii. Our presentation of Cernavski’l’s technique incorporates 
modifications due to Cantrell and Lacher as well as modifications due 
to this author. In Section 5.3, Cernavskii’s technique is applied in the 
development of some work of this author on the taming of embeddings 
of PL manifolds around the boundary in all codimensions. Discussion and 
work on a topological embedding problem with many important impli- 
cations is given in Section 5.4, that is, the problem of PL approximating 
topological embeddings. The approximation technique expounded is due 
to Homma. We feel that Section 5.4allows one to understand Homma’s 
technique without undue agony. Results of the previous two sections 
are used in Section 5.5 to prove €-taming theorems due to this author. 
Finally, Section 5.6 is devoted to work of Cernavskii, R. D. Edwards and 
Kirby on codimension zero taming and on local contractibility of the 
homeomorphism group of a manifold. 

220 
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5.2. ~ERNAVSKIPS STRAIGHTENING TECHNIQUE APPLIED 

TO CELL PAIRS A N D  TO SINGULAR POiNTS 

OF TOPOLOGICAL EMBEDDINGS 

In  this section we return to investigate a problem which was formdated 
as the p-statement in Sections 2.7 and 3.9. Counterexamples to the 
/?-statement were given for certain special cases in Section 2.7. Most of 
the work in this section is based on [Cernavskil, 1 ,  5, 61, [Cantrell, 31, 
and [Cantrell and Lacher, I]. For references to other work on the 
?-statement and for discussions of that statement see Sections 2.7 
and 3.9. 

Before stating the main results of this section, let us make a few 
preliminary definitions. An embedding h: Mn-2 -+ Nn of an ( n  - 2)- 
manifold M into the n-manifold N is called 1-ALG (Abelian local 
fundamental group) at x E M if for each neighborhood U of h(x) in N 
there exists a neighborhood V C U of h(x) such that every mapping of 
S1 into V - h(M) which is null-homologous in U - h(M) is null- 
homotopic in U - h(M). (This property was defined in [Harrold, 13.) 
The  next definition generalizes the notion of 1-LC given in Section 2.6. 
If Mk is a k-submanifold of the n-manifold Nn, then N - M is said 
to be p-LC (locally p-connected) at x E M if each neighborhood U of x 
contains a neighborhood V of x such that every mapping of S p  into 
V - M is null-homotopic in U - M .  An embedding h: -+ Nn 
of an ( n  - 2)-manifold M into an n-manifold N is said to be locally 
homotopically unknotted at x E M if h is 1-ALG at x and if N - h(M) 
is p-LC at h(x) for 2 < p < [n/2]. We shall also say that a submanifold 
M C N is locally homotopically unknotted at x E M if the inclusion 
embedding of M into N is locally homotopically unknotted at x. 

We are now ready to state our first main result which has many of the 
8-statements as corollaries. (In this section, we let F be the k-dimensional 
hyperplane of En determined by xk = * . *  = xnP1 = 0. We denote by 
Bk-l the closed unit ball in En-1 and by Bk the closed unit ball in F. 
FinallyF, =Fn  E y  ,F- = F n E_",  Bt  = Bk nF, and Bk = Bk nF- ; 
see Fig. 5.2.1.) 

Theorem 5.2.1. Suppose that h: Bk + En, n 3 5 ,  is a topological 
embedding such that h I Bk and h I(B: - Bk-l) are locallyflat. If k = n - 2, 
suppose further that h is locally homotopically unknotted a t  the points of 
Int Bk-l. Then, h is locallyflat. 

Corollary 5.2.1. P(n, k, k, k - 1) is true for n 3 5,  k # n - 2. 
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E "  t 

Figure 5.2.1 

REMARK 5.2.1. 
of  Theorem 3.8.1. 

Notice that for 2k + 2 < n, Theorem 5.2.1 is  a special case 

REMARK 5.2.2. Notice that Theorem 2.7.1 shows the necessity of the require- 
ment that h be locally homotopically unknotted at points of Int Bk-l when 
k = n - 2 .  

Before beginning the proof of Theorem 5.2.1, let us state and prove 
the second main result (Theorem 5.2.2) of this section. The  proof of 
Theorem 5.2.2 uses Theorem 5.2.1 in a fundamental manner and its 
origin is due to Cantrell [3]. If h: Mk -+ N" is an embedding of a k-  
manifold M k  into an n-manifold N ,  then we say that the point x E 1M 
is a singular point of h if it has a neighborhood V in M such that h is 
locally flat at all points of V - x, and also possibly at x. 

Theorem 5.2.2. Suppose that h: Mk -+ En is an embedding of a 
k-dimensional manifold, possibly with boundary, into n-dimensional 
Euclidean space. 

(a) If n 3 5 ,  k # n - 2, then h is locally j lat  at each singular point x 
of Int M .  

(b) If n 3 4, then h is locally flat at each singular point x of Bd M. 
(c)  If n 2 5, k = n - 2, then h is locally jlat at  a singular point 

x E Int M if and only if h is locally homotopically unknotted at x. 

PROOF. Part (b) is a special case of Corollary 3.4.3. Hence, we may 
assume that our singular point x is in Int M .  Then, let D be a locally 
flat k-cell neighborhood of x in Int M. We may express D as the union of 
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two k-cells D, and D- so that (D, D, , D-) is homeomorphic to 
(Bk, B: , Bk) and so that x E D, n D- . Then, h I D, and h I D- are 
locally flat by Corollary 3.4.2 and so h I D is locally flat at x by 
Theorem 5,2.1. 

REMARK 5.2.3. A proof of F(n, n - 1, n - 1, n - 2) is given in [Cernavskii, 
41 which is different from the proof of this section. That proof is good for n 3 4, 
and so it follows from the above proof that an embedding of an (n - 1)-manifold 
into an n-manifold is locally flat at each singular point when n 2 4. A proof of 
P(n, n - 1, n - 1, n - 2) is also given in [Kirby, 21. 

We will postpone the proof of the following lemma until after the 
proof of Theorem 5.2.1. 

Engulfing Lemma 5.2.1. Suppose that h :  E: -+ E: is a closed embed- 
ding which takes Ek-l into itself such that h 1 N = 1 for some neighborhood 
N of Bk-' in Ek-l and such that h(E: - Ek-l) is in Int E: . Suppose that 
n 5 and that h(F,) u F- is locally homotopically unknotted at each point 
of N for k = n - 2. Then, for any E > 0, there is an ehomeomorphism 
f: En -+ En which is the identity outside the E-neighborhood of Bk-l and on 
ET such that f (h(1nt E:) u Bk-l) contains a neighborhood of Bk-l relative 
to B: . 

The rest of this section will be organized as follows: First we will give 
several definitions. Next we will state and prove two lemmas preliminary 
to the proof of Theorem 5.2.1. Then, we will prove Theorem 5.2.1. 
Finally, we will prove Engulfing Lemma 5.2.1. 

The Planes TI, . Define a collection {n-,} of 2-dimensional hyper- 
planes filling up En as follows. For each point p in En - F,  let p' be the 
(orthogonal) projection of p in F, and let L, be the line in F through p' 
and orthogonal to Ek-'. The 2-dimensional hyperplane in En spanned 
by p and L, for p in En - F make up the collection {7ra}. The collection 
{nu} is indexed so that if a # p, then T, # 7~~ . 

It will be convenient to use a coordinate system for n-, in which the 
corresponding L, is the abscissa and the origin 0, is the point Lp n Ek-'. 
The ordinate axis in n-, is rrn n En-'. The  unit distance in rr, will be 
specified later. 

Horns H , .  Let En-k+l be the hyperplane of En determined by 
= xk-1 = 0. For each real number t ,  let c, be the "cone" in x1 = 

En--k+l determined by the equation 

x, = t ( X , 2  + * * .  + X:-,)"2 
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and let H ,  = Ek-l x C, C En (see Fig. 5.2.2). The set H ,  is called the 
horn with coefficient t. Notice that H ,  is a closed copy of En-’ in En. 

For each t ,  the horn H ,  intersects each plane T, in a (topological) line 
containing 0, , and 0, divides this line into two (straight) rays each of 
which forms with the abscissa axis in 7ra the angle arc cot t. These two 

Figure 5.2.2 

straight rays forming H ,  n 7r, lie in the first and fourth quadrants of 7r, 
if t > 0 and in the second and third quadrants if t < 0. (For the case 
t = 0, H, = En-l, so that Ho n 7r, is the ordinate axis in nu .) 

Given t and t‘, then, by defining an appropriate homeomorphism on 
each plane 7ra, one can construct a homeomorphism on En that is the 
identity on Ek-’ and carries H ,  onto H,, . I n  particular, each H ,  is a 
locally flat copy of En-I in En and divides En into two closed half-spaces; 
the one containing the “positive xn-axis” is denoted by Qt+ and the other 
by Qt-. The closure of the region between H ,  and H,, is denoted by 

A set X in En is said to be tangential to H ,  if for 
each > 0 there is a neighborhood N of Int Bk-l in En such that the inter- 
section of X and N is nonempty and is contained in Q(t - E, t + €). If 
further we always have X n N C Q(t + E ,  t ) ,  we say that X is tangential 
to H ,  on the positive side. Tangentiality on the negative side is defined 
similarly. 

Q(t, t‘). 

Tangentiality. 

The Unit Length in TT, and the Pentagons P a .  We will define the 
unit length in 7r, relative to a fixed point p on the positive x,-axis. Let 
K, be the join o fp  and B”l. For each point q in the join ofp  and Bd Bk-l, 
let Ip be the segment from q to the projection of q in B”l. For each plane 
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nu that intersects Int Bk-l, there is a point q such that I, C nu . We let 
1, be the unit length in n, . Notice that Iq lies on the abscissa of re, 
and that the “unit length in n,” tends to zero as “n, tends to Bd Bk-l.” 
We will not need a unit length in those planes nu which do not intersect 
Int Bk-1. If nu intersects Int Bk--l, we define P, to be the pentagon in T, 

with vertices 

(0, l),, (1, I ) , ,  (2, O),, ( I ,  -l),, and (0, 

Expansion Lemma 5.2.2. Let h be an embedding of E: into En which 
takes Ek-’ into itself such that h 1 Bk-’ = 1 and such that for some p on the 
positive x,-axis, h(Ey) 3 K, U ( U{a,n,nmt B ~ - l + O )  Pol). (See Fig. 5.2.3.) 
Then, there is a homeomorphism e of En - Bk-l onto En - K, that is the 
identity on Elf and outside h(ET) which satisfies the following condition: 

A sequence of points X C En - K, converges to a point x in K, if and 
only if e-’(X) converges to the projection of x in Bk-l and is tangential to 
H,c,) , where t (x )  is the abscissa coordinate of x relative to the coordinate 
system in some r, containing x. 

t 

Figure 5.2.3 

PROOF. In  each plane n, (see Fig. 5.2.4) we will define a homeo- 
morphism e, . If nol n Int Bk-l = 0, let e, = 1. If na n Int Bk-l # 0, 
let e, be the identity outside of the pentagon Pa, and define e, on Pa as 
follows: For a point r = (t, s), , 0 < t < 1, on Bd Pa , we map the 
segment [O, , r]  from 0, to r linearly onto the segment from ( t ,  0), to r 
and let e, be the restriction of this map to the half-open interval (0, , r ] .  
(In verifying that our map e has the desired properties, keep in mind that 
the segment [O, , r]  is contained in H ,  n nol .) If r = ( t ,  s), , 1 < t < 2, 
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Figure 5.2.4 

is on the boundary of P, , map the segment [0, , r ]  linearly onto [( 1 , 0), , Y] 

and let e, be the restriction of this map to (0, , r ] .  
Then let e = e, on n, . I t  is a routine matter to verify that e has the 

desired properties. 
The  next lemma, which is fundamental to the proof of Theorem 5.2.1, 

employs the basic technique of “meshing a straight structure and a 
wiggly structure” which was probably developed by Brown when he 
showed that the monotone union of open n-cells is an open n-cell. A 
relative version of Brown’s work was given in Theorem 3.4.2. 

Rearrangement Lemma 5.2.3. Let h be an embedding of EY into 
EY which takes Ek-l into itself such that h I N = identity for some closed 
neighborhood N of Bk-1  in Ek-l and such that h(En-’ - Ek-l) is in Int EY . 
Suppose that n > 5 and that h(F+) u F- is locally homotopically unknotted 
at eachpoint of N for k = n - 2. Then, for any E > 0, there is an 6-homeo- 
morphism r of En onto itself such that Y is the identity on Ek-’ and outside 
the E-neighborhood of Bk-l, and such that for each t ,  0 < t < 1, rh(Ht) 
is tangential to H ,  . Also, for an appropriate choice of p we may assume 
thaf rh(1nt Eq)  u Bk-l 3 Kp U ( UI.,n,AInt B~-1=6)  P,). 

Let to , t ,  , t ,  , ... be the dyadic rationals in I ,  to = 0, t ,  = 1 ,  
t, = 1/2, t ,  = 1/4, t ,  = 3/4, t ,  = 1/8, ... . For each i, we will construct a 
homeomorphism hi on En such that, if 0 < j  < 1, then (hih) H l j  is 
tangential to H,, on the negative side and (h,h)-’ H t j  is tangential to 
H ,  on the positive side. The hi will be constructed so that r = lim h, 
wi6 be a homeomorphism. It will be apparent that r is an ehomeo- 
morphism that is the identity on Ek--’ and outside the E-neighborhood 
of Bk-l. Also, it will be clear that rh(H,*) is tangential to H , ,  for 
i = 0, 1, ... . I t  is easy to see that if the tangentiality condition holds on 
a dense subset of I ,  then it holds on all of I. 

PROOF. 
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Construction of h, . We are given that h(F+) u F- is locally homo- 
topically unknotted at each point of N. Let B, C Int B, C Int B, be 
(K - I)-cells in N containing Bk-' which are concentric with Bk-1 .  (In 
the case k - 1 = 0, Bt-' = Bk-l.) Let Kp6, Poli, and so forth, be 
defined in terms of Bq-l, i = 1,2,3,  analogous to the way K p  , Pa , and 
so forth, were defined in terms of Bn-l. 

By Lemma 5.2.1, there is a homeomorphism e, of En which is the 
identity on IF! and such that e,(h(Int E:) U Bf-') contains some neigh- 
bothood of Bf-' in Bf, . Then, by properly defining a homeomorphism 
on each plane ral, one can easily construct a homeomorphism e2 of En 
such that e2 1 Ek-l = identity and such that e2e,(H,) is tangential to H ,  
on the negative side relative to B, . Moreover, e2 and el can be chosen to 
be the identity outside of any preassigned neighborhood of Bf-' (hence, 
by picking Bf-l close to Bk-l, outside any preassigned neighborhood of 
Bk-l) and for an appropriate p we may construct e2 such that 

e,e,(Int E:) u B,~- 'I  K,' u 

(See Fig. 5.2.5.) 

L 

t E: 

iet , 

& KP e ,  h(E+") 

.-I p 4  
' 0  

CONSTRUCTION OF ho 

Figure 5.2.5 
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Let us denote the n-cell Kpi u (U~,+,,enIntB:-l+Ol Pmi) by Ain, 
i = 1, 2, 3, and let B," denote Int Aln u Int(Aln n En-,). Now construct 

such that g, 1 Bt-' = identity. Let so = e,e,h and notice that si1g1 
satisfies the hypothesis of Lemma 5.2.1. Thus, there is a homeomorphism 
g3 on En which is the identity on E11 and such that e,(s,lg,(Int EY) u Bk-l) 
contains some neighborhood of Bt-' in B$ . There is then a homeo- 
morphism E4 on En such that g4 I EIl = identity and if4~3s~1(Ho) is 
tangential to H ,  on the positive side relative to BE-'. 

Now we can define h, . First, we let e3 be defined on En by letting 
e3 = identity on En - s,(ET) and e, = sOe3 e4 so on s,(EY). Then let 
h, = e3e2e1. It is clear that (h,h)H, is tangential to H ,  on the negative 
side and 

a homeomorphism g,: (EY , F+ , Ek-') - (Bin, Bln n F+ , Bln n Ek-l 1 

--1--1 -1 

(hah)-l(Ho) = h-le;leileil(Ho) = h - ' e ; l e ~ l s a ~ ~ ~ ~ ~ ~ l ( H o )  

= h-le-le-le h- - -1 
1 2 2 1 e4e3s0 (Hll) = '4hcs,s,'(H0) 

is tangential to H ,  on the positive side. Moreover, if we are given E ,  > 0, 
we can construct h, such that it is an c,-homeomorphism of En which is 
the identity outside the q,-neighborhood of Bk-l. Finally, we note that 
h, I Bk-l = identity. 

Notice that in the construction of g4 in the 
preceding step, we could assure that 

Construction of h , .  

A; n Q: C ~ , E & ~ ( E : )  = (hah)-l(ff:). 

Hence, h,h(A," n Q1+) C Ey . Let B," denote 

(Int A," n Int 8,') u Int(AZn n Hl). 

Now construct a homeomorphism 

g,: (E;  , F ,  , Ek-l)  - (BZn, B; n F ,  , B; n Hl) 

such that g, I Bt-' = identity. Then, h,hg, satisfies the hypothesis of 
Lemma 5.2.1. Thus, there is a homeomorphism e6 on En that is the 
identity on E11 such that e,(h,hg,(Int ET) u B3k-l) contains some neigh- 
borhood of B2-l in 3!+. As before there is a homeomorphism e, on En 
that is the identity on E_" (and outside a small neighborhood of B,k-') 
such that e,e,h,h(H1) is tangential to H ,  on the negative side relative to 
B3k-l. We may also assume that e&hOh(Ql+) I) A,n n Ql+. See Fig. 5.2.6. 

Let B,n denote (Int n Int Q1+) u Int(A,n n H l ) .  Construct a 
homeomorphismg,: (EY , F+ , Ek-l) - (B3n, B,n n F+ , B," n H,) such 
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l e 5  

CONSTRUCTION OF h, 

Figure 5.2.6 

that g, I Bk-l = identity. Let s1 = e,e,h,h and notice that si1g3 satisfies 
the hypothesis of Lemma 5.2.1. Thus, there is a homeomorphism 
C7 on En which is the identity on 8,- (in applying Lemma 5.2.1 here, 
let 8,- play the role of El!) such that C7(sT1g3(Int ET) u Bk-l) contains 
some neighborhood of Bk-l in BF.  There is then a homeomorphism 
C, on En that is the identity onQ,- and is such that C,C~S;'(H,) is tangential 
to H ,  on the positive side. 

Let e7 be defined on E n  by e7 = identity on En - s,(E:) and 
e7 = s,e7 e, s1 on s,(E:). Define g, = e7e6e5 , and let h, = g,h, . 
Again the tangentiality condition holds and given E ,  > 0, g, can be 
constructed to be an 6,-homeomorphism of En onto itself, the identity 
outside the El-neighborhood of Bk-l, and the identity on Bk-l. (In fact, 
g, is the identity on E? .) 

(Engulfing Lemma 5.2.1 was used in 
the construction of el , 6 ,  , e5 , and C7 . We will not need to apply Lemma 
5.2.1 again. The construction of h, for i 3 2 is simpler than that of 
h, and h, .) Suppose that hi-, , i 2 2, has been defined and let t ,  , t, 
be the numbers in { t o ,  ..., tt-l} that are closest to ti, with t ,  < ti < t, 

--,--I -1 

Construction of hi for  i 2 2. 
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(see Fig. 5.2.7). Consider (h,-lh)-l and let go be a homeomorphism of 
En such that C, = identity on (h,-lh)-i Q; u Q; , and such that in a 
small neighborhood of Int Bk--l, ZD(Htm) C (/~,-.~h)-~ Q L  . Let e, be the 
identity on Qi, and ( h J z )  .i?D(h,-lh)-l on Q t  . Then e,h,-,h(Htt U Htm) 
is “outside” while e,hi-l!z(Ht,) is inside Q(t,  , t,). Thus one easily 
constructs a homeomorphism el, that is the identity outside Q(tl  , tm) 
and is such that eloeohi-l(Ht,) is tangential to HI‘ on the negative side. 
T o  re-establish the tangentiality condition for t,, we follow el,e,h,-lh 
by e;‘. 

If s, = e~lel,e,h,-lh, then, in a small neighborhood of Int Bk-l, 
si1(H,() is in &(ti , t,). Hence, there exists a homeomorphism Ell on En 
that is the identity outside Q(ti , t,) and is such that i?lleF1(Htt) is 
tangential to H,‘ on the positive side. We then let ell be the identity 
outside s,Q(t( , t,) and ell = $,ell si on siQ(ti , tm). 

--1 -1 

pi-i 

c 

CONSTRUCTION OF h i  
FOR i ? 2  

Figure 5.2.7 
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Finally, Jet g, = e,,e;le,,e, and hi = g,h,-, . Again, we observe that, 
given hi-l and ci > 0, gi can be constructed so that it is an c,-homeo- 
morphism of En, and is the identity on Bk-' and outside the €,-neighbor- 
hood of Bk-l. 

If h and E are as in the hypothesis, let co = €12, 
and construct go = h, as above. When hi-, has been constructed, let V be 
a 6-neighborhood of Bk-l, 6 ,< ~ / 2 ~ ,  such that dist(x, h,-,(x)) < 42 i f l  
holds for all x in V. Then, choose ci > 0 to be smaller than c/2,+l and to 
satisfy the following property: the closure of the c,-neighborhood U, 
of Bk-l is contained in hi-,(V). Then, let g, be constructed from hi-, 
and ct as above, and let hi = g,h,_, . Let r = limi hi . I t  is easily checked 
that r is an c-homeomorphism of En onto itself which is the identity 
on Bk-l and outside of the c-neighborhood of Bk-l. It is clear from the 
construction of Y that rh(H,,) is tangential to H,( for i = 0, 1, 2, ... . 

Proof of Theorem 5.2.1. We are given h: Bk -+ En such that 
h I Bk is locally flat. It follows from Corollary 3.4.1, that there is a 
homeomorphism h,: En -+ En such that h,h is the identity on Bk . 

In a standard way construct a neighborhood of  Bk - Bk-l in En 
whose closure is an n-cell D whose boundary is locally flat in En and does 
not intersect h,h(BT - Bk-l), and such that (D, B!) w (S? , Bk). 
[Although it is not difficult to construct D in this simple situation, in the 
next section we will prove a general lemma (Lemma 5.3.3) which will 
imply the existence of D as a corollary.] Now it is easy to construct a 
homeomorphism of the compactified En, h,: En v 00 - En v co 
which takes the boundary of D onto H ,  V co and which is the identity 
on Bk . Replacing the embedding h by the embedding h,h,h, we see that 
it is sufficient to consider the case where h is the identity on Bk and 
h(Br - Bk-l) lies inside ET . 

By using Theorem 3.4.3, we can construct an n-cell D, 3 h(B:) such 
that D, C Int EY U Bk-l for which there is an extension of h 1 B: to an 
embedding of 2BT onto D, , where 2Bn is the ball of radius 2 in En. 

We shall first prove that the embedding h is locally flat at each point of 
Int Bk-l, for example at 0. Therefore we can replace Bk by a smaller 
concentric ball B k  and thus we can assume that the embedding 
h I B t  can be extended to a neighborhood U of in Eq such 
that h( U - E k - l )  C Int ET . It is now easy to construct a homeomorphic 
mapping of EY into this neighborhood which takes En-' into itself and 
is the identity on a neighborhood of s: in 2 s ; .  Then the compo- 
sition of this mapping and the previous extension of h gives a new 
extension of h to a homeomorphic mapping h of the whole of EY into 
itself which takes Ek-l into itself such that h 1 N = identity for some 

Construction of r .  
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closed neighborhood N of Bk-l in Ek-' and such that h(En-' - Ek-l) is 
in Int E: . Also, in case K = n - 2, h(F+) u F- is locally homotopically 
unknotted at each point of some neighborhood of N in Ek-'. (Let us 
denote Bk by B k  from now on.) 

From Lemma 5.2.3, we obtain a homeomorphism r on En such that r 
is the identity on B k - l  and, for 0 < t < 1, &(HI)  is tangential to H i .  
It is easy to see that we may assume that r is the identity on Bk . Also 
by Lemma 5.2.3, for some p on the positive xn-axis, we may assume that 

i, rh(1nt ET) u Bk-' 3 K, u 
crln,nlnt Bk-'#BI 

Let e be given by Lemma 5.2.2 for the homeomorphism rh. Define 
f: En - En as follows (see Fig. 5.2.8): 

Figure 5.2.8 

h-l 1 h(K,) on h(K,) 

ev(he-'h-') on h(E:) - h(K,) 

Y on Cl(En - k(E:)). 

Then, 3 is the identity on BE = h(Bk) and 3h(K) = h-'h(K) = K. 
We have therefore shown that h is locally flat at each point of Int Bk-l. 

In  order to complete the proof, we need to show that h is locally flat 
at points of Bd Bk-'. To do so, consider the n-cell Gn obtained from Bn 
by expanding En with coefficient 2 from En-'. (See Fig. 5.2.9.) By a 
technique of construction similar to that employed in the proof of 
Theorem 3.4.1, one can obtain an extension h of the embedding h to 
Gn. Furthermore, there exists a homeomorphism t :  Gn - Gn which is 
the identity on Bd Gn and which takes Bk onto B'C . The homeomorphism 
hth-l can be extended identically onto the whole of En, and it takes 
h(Bk) onto h(B!), that is, h(Bk) is embedded in En, so as to be topo- 
logically equivalent to B! . This proves the theorem. 
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t 

Figure 5.2.9 

Proof of Engulfing Lemma 5.2.1 for k Q n-3. This proof 
consists of showing that for k < n - 3,  Engulfing Lemma 5.2.1 is 
actually a corollary of Infinite Engulfing Theorem 4.14.1. In applying 
Theorem 4.14.1, let the role of (M", U, Pk, Q, C, E )  in Theorem 4.14.1 
be played by 

(Int E: , h(Int By), BF - Bk-l, 0, C,  4 2 )  

of Lemma 5.2.1, where C is a compact subpolyhedron of Bk, - Bk such 
that B r  - C C N , I ~ ( B ~ - ~ ,  Eq). It is clear that Bk, - Bk-l tends to 
h(Int(By)) and that Int E: is ULCk. Hence, in order to apply Theorem 
4.14.1 it only remains to show that h(1nt By)  is ULCk-'. Since BY is 
compact we can cover it with a finite number of open spherical neighbor- 
hoods Ul , U, , ..., Us such that diam(h( 17,)) < E for i = 1, ..., s. Then, 
h( Ul) ,  ..., h( Us) is an open covering of h(Bq). Let 6 be the Lebesgue 
number of that covering. Then any map f of a sphere S p  into h(1nt BP) 
such that diam f ( S P )  < 6 lies in some h(Ui)  and so is null-homotopic 
through a homotopy whose track has diameter less than E .  Now we can 
apply Theorem 4.14.1 and obtain the isotopy e,:  Int E: -+ Int Ey of the 
conclusion. Extend el over E_" by the identity and notice that this 
extension satisfies the requirements for f in the conclusion of 
Lemma 5.2.1. 

Before proving Engulfing Lemma 5.2.1 for the cases k = n - 1 and 
R = n - 2,  let us state and prove the following preliminary lemma. 

Lemma 5.2.4. Let k = n - 1 or n - 2. Suppose that h: E; -+ EP is a 
closed embedding which takes Ek-l into itself such that h I N = 1 for some 
neighborhood N of Bk-l in Ek-' and such that h(E: - Ek-') C Int QG2 . 
If k = n - 2,  suppose that h(F+) U F- is locally homotopically unknotted 
at each point of N. Then, for any E > 0 and x E N there exists a 6 > 0 
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such that if r :  a t dt -+ N8(x, En) - (h(Ql+) u Qo-) is a mapping of the 
lateral surface of the ( i  + 1)-dimensional simplex Ai+l = a c LV, i < [n/2] ,  
and either 

(a) r(di) C h(Q,+ - Q1+) or 

(b) r(d0 C Qip - Qo-9 

then there exists an extension of r to Ai+l such that 

,(Ai+') C NC(x, En) - (h(Q,+) U Qo-) 

and in Case (a), r(di)  C h(Qo+ - Q1+), and in Case (b), r(di)  C &1/2 - Qo-. 
(See Fig. 5.2.10.) 

Figure 5.2.10 

We shall consider Case (a). The proof of Case (b) is the same. 

Proof of Lemma 5.2.4 for k = n - 1. Notice that for any t such 
that 0 < t < 1, there is a natural way to define a map 

g,: En - h(F+) --H En - h(Int(Qt+)), 

which is fixed on En - h(Q,+). Also, there is a 6' > 0 such that for any 
such t ,  g,(N8'(x, En)) C N,(x, En). Let 6" > 0 be small enough that if 
DB",' = {y E F+ 1 dist(y, x )  < a"}, then h(D??) C N,,(x, Ern). Now, let 
6" be small enough that NBw(x, En) n h(F+) C h(Dr:'). Finally, it is 
easy to see that there is a 6 > 0 such that any map of di into 
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N,(x, En) n h(Qo+ - Q1+) can be extended to a map of di into 
N,-(x, En) n h(Qo+ - Qi-). 

We will show that the above constructed 6 satisfies Lemma 5.2.4 for 
the chosen E .  Let Y: a 3 di -+ N,(x, En) - (h(Ql+) u Qo-) be given. 
Then, by choice of a, r can be extended to take (di+l, di) into 

contractible and so Y can be extended to take di+l into N,m(x, En) - Qo-. 
Then, by choice of 8”’) r(di+l) n h(F+) C h(D:.’) and by using Tietze’s 
extension theorem as in the proof of Example 2.6.1, we can “cut r off” 
on Int h(D:rl) and push it to the side of h(F+) containing r(di+l) by 
using a collar. We now have altered Y so that it takes (di+l, di) into 
(Ng(x, En) - (h(Ql+) u Qo-), h(Qo+ - Ql-)). There is a t such that 
0 < t < 1 and r(di+l) C En - h(Qt+).  Let g,  be defined as above. Then, 
glr ,  which we rename Y, is the extension we were seeking. 

(N,~(x, En) - (h(Q,+) U Qo-1, h(Qo+ - Qi-)). Now N,~(x, En) - Qo- is 

Proof of Lemma 5.2.4 for k = n - 2 

Case 1 (i = 0). In  this case di+l is a segment with ends a and di. 
There is a natural way to define a homeomorphism 

g: En - (F- u h(F+)) * En - ( 8 0 -  u h(Q,+)) 

which is fixed on En - u h(Qo+)). Let 6 < ~ / 2  be a positive 
number which is small enough that points in Ne(x, En) are moved less 
than c /2  under h. Since classically no n-manifold can be separated by 
a subset of dimension <a - 2 (see Corollary 1 of Theorem 14.4 of 
[Hurewicz and Wallman, I]), it follows that N,(x, En) is not separated 
by N,(x, En) n (F- u h(F+)). Thus, there is a path 

n: a * do --+ N,(x, E n )  - (F- u h(F+)), 

which connects ~ ( a )  to an arbitrary point of h(Qo+ - F+). It follows from 
our construction that r = g n  is the desired extension. 

Notice that the sequence of open round balls 
N,,,(X, En), j = 1, 2, ... has the property that 

Case 2 (3 < i < [n/2]) .  

(N&, En),  N&, En) n F )  (En, En-2) 

and so Nl/ , (x ,  En) - F has the homotopy type of S1. Therefore, 
N1li(x, En) n (Qo+ - PI+) has the homotopy type of S1 as does 

D, = h(N,,,(x, En) n (Q,+ - Q1+)), j = 1, 2, .... 
The existence of D, , j  = 1, 2, ... ensures: 
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Fact. Given 6' > 0 there exists a 6 > 0 such that any map of 
di, i 3 2, into N,(x, En) n h(Qo+ - Q1+) extends to a mapping of di 
into N,,(x, En) n h(Qo+ - Ql+). (We will use this fact soon.) 

Since h(F+) u F- is locally homotopically unknotted at x, it follows, 
by an argument similar to the one which used g, in the proof above of 
Lemma 5.2.4 for li = n - 1, that there is a 6' > 0 such that any map 
of (di+l, di) into (Nsf(x,  En) - (h(Ql+) u Qo-), h(Q,+ - Q1+)) extends to 
a mapping of (di+l,  di) into (N,(x,  En) - (h(Q,+) u Qo-), h(Qo+ - Ql+)). 

Let the 6 in the Fact given correspond to the 6'just mentioned. Then, 
given r :  (a c di, di) -+ N,(x, En) - (h(Q,+) u Qo-), h(Q,+ - Q1+)) the 
Fact gives r :  (di+l, di) --t (N,(x, En) - (h(Q1+) u Qo-), h(Q,+ - Ql+)). 
Finally the last paragraph gives 

as desired. 

Case 3 (i = 2). Let Bi+ = B, n Qo+, i = 1, 2, ..., where B, is the 
closed round ball in En about x of radius I/i .  Then, (Bi+, Bi+ n F+) rn 
(In, In-'). Let Fin = h(Bi) and FF-' = h(Bi n F+) (see Fig. 5.2.11). 
Then, (Fin, Fp-') m (In, P2). Let I be a loop in Fin - Fin-' which is null- 
homotopic in En - (F- U h(F+)). By pushing radially away from a point 

Figure 5.2.11 
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p E Int Fin-', we see that I is homotopic in Fin - FFP2 to a loop 1' in 
Bd Fin - Bd FF-' which is null-homotopic in 

En - ((IntFp) u F- u h(F+)). 

We now wish to establish the following 
Claim. 

Since we know that I' is null-homotopic in En - ((Int F,") u F- u 

1' is null-homotopic in Bd Fin - Bd Fn-'. 

h(F+)), it will suffice to show that the injection 

nl(BdFjn - BdF;-') -+ r1(E" - ((IntF?) U F- u h(F+)) 

is a monomorphism. In  order to do so, consider the following Mayer- 
Vietoris sequence ([Spanier, 1, pp. 186-1901) where Xn-' = F- u h(F+): 

-+ &(En - (Xn-' - IntF:)) + Hl(BdFin - BdFr-2) 

+ Hl(En - (IntF," u X"-')) @ Hl(F: - (Bdc- ' ) )  

--+ Hl(En - (Xn-' - IntFr-')) + ... . 

By using Alexander duality [Spanier, 1, p. 2961, this sequence becomes 

Hence, the inclusion of Bd Fin - Bd FF-' into En - (Int Fin u Xn-' 1 
induces an isomorphism on first homology. But now any loop I in 
Bd Fin - Bd FF-2 which is null-homotopic in En - (Int Fin u 2P2)  is 
also null-homologous in En - (Int Fin u XF-"), consequently null- 
homologous in Bd Fin - Bd Fin-'. Since .rrl(Bd Fin - Bd is Abelian 
it follows [Hu, 1, pp. 44-47] that I is null-homotopic in Bd Fin - Bd FF-2 
and so the injection 

vl(Bd F: - BdFr-') + n1(E" - (IntFin u X')) 

is a monomorphism as desired. 
We have just established that any loop in Fin - FF-' which is null- 

homotopic in E n  - (F- u h(F+)) is also null-homotopic in Fin - Fin-'. 
From this it follows easily that any loop I in Fin - h(Ql+) which is 
null-homotopic in En - (Qo- U h(Q,+)) is also null-homotopic in 
Fin - h(Q,+). From this follows 

Fact. Given 6' > 0, there exists a 6 > 0 such that any mapping 
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r:  (u  AC d2, dz) -, (Ng(x, En) - (Qo+ u h(Ql+)), h(Q,+ - Q1+)) extends to 

r :  (A3,  A') + (Ndx, E") - (Qo' u h(Qi+)), h(Q$ - Qi+>). 

The  proof is now completed as in Case 2. 
Case 4 (i = 1). 

Fact. 

I n  order to prove this case we will need the following 
fact. 

Suppose that we are given a closed (n - 2)-string Xn-' in 
En, a point x E Xn-2 and E > 0. Then, there exists a 6 > 0 such that 
if Fn is an n-cell in N,(x, En)  and Fn-2 = F n  n Xn is an (n - 2)-cell 
having the property that (Fn, Fn-2) is a trivial cell pair, then for any 
path I in N,(x, En) - Xn-2 whose end points lie in Fn,  there is another 
path I' in Fn - Fn-2 having the same end points such that the loop 
1 U 1' is null-homologous in Nc(x, En) - X'@. 

For examples of how I' would look in a couple of situations see 
Fig. 5.2.12. 

E n  
- 2  
_.._ __-- 

4 U 4' BOUNDS A DISK 

9 U 4' EOUNOS A DISK 
WITH HANDLE 

Figure 5.2.12 

Since Fn - Fn-2 has the homotopy type of S,  it should be fairly clear, 
intuitively, that one can obtain the desired I' by winding a certain number 
of circuits around h(Q,+) in one direction or the other. A rigorous proof 
uses the notion of linking numbers and will not be presented here. The  
interested reader is referred to Volume 3 of [Alexandroff, I]. We will 
now assume the fact and complete the proof. 

For any t such that 0 < t < 1, there is a natural way to define a map 
g,: En - (h(F+) u F-) - En - (h(1nt Qt+) u Int Qo-) which is fixed on 
En - (h(1nt Q1+) u Int Qo-). Also, there is an E' > 0 such that for any 
such t, gt(N,*(x,  En)) C N,(x, En). Now since h(F+) U F- is locally 
homotopically unknotted at x, there is a 6' > 0 such that every 
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loop in N,(x, En) - (h(F+) uF-) which is homologous to zero in 
Nf*(x,  En) - (h(F+) u F-) is homotopic to zero in N6,(x,  En) - (h(F+) u F-) 
If we take the E of the fact to be S', then we get a S" such that if Fn is an 
n-cell in N,e(x, En) and Fn-2 = Fn n Xn-2 is an (n - 2)-cell having the 
property that (F", Fn-2) is a trivial cell pair, then for any path I in 
N,*(x, En) - (h(F+) u F-) whose end points lie in Fn, there is another 
path 1' in Fn - Fn-2 having the same end points such that the loop 
1 u I' is null-homologous in N,,(x, En) - (h(F+) u F-).  We take Fn of 
the last sentence to be a sufficiently small Fin constructed in Case 3. 
Finally let 6 be small enough that N,(x, En) n h(Q,+) C Fn. 

Suppose we have 

Y :  (a * dl, A') + (N,(x, En) - (h(Q,+) U Q0-1, h(Qo+ - 81')). 
Then, by choice of 8, r(d1) C Fn C N,-(x, En) and so by choice of 6" the 
fact assures that r can be extended to r :  d2 -+ N,*(x, En) - (h(F+ U F-)) 
where r(d2) is null-homologous in N,,(x, En) - (h(F+) u F-). Hence, by 
our choice of a", r(d2) is also null-homotopic in N,,(x, En) - (h(F+) u F-) 
and we obtain an extension r :  A 2  + N6,(x, En) - (h(F+) UF-). There 
is a t such that 0 < t < 1 and r(a * d1) C En - h(Q,+). Let g, be defined 
as above. Then, glr ,  which we rename Y ,  is the extension we were seeking. 
This completes the proof of Lemma 5.2.4. 

Proof of Engulfing Lemma 5.2.1 for k = n - 1 and n - 2  
Throughout this proof let us abbreviate N,(B*-', En) to N, . Notice that 

we may assume, without loss of generality, that h(EY - I?*-') C Int 
so that Lemma 5.2.4 applies. Also, assume that c is small enough that 
N, n Ek-l C N .  We take a triangulation T of En - Ek-l refined to 
Ek-l and such that no closed simplex of T lying in N ,  simultaneously 
intersects two of the sets h(Hl) ,  h(Hll2),  h(H,) u Hl12 , Hl14 , Ho . 

We denote by P the polyhedron consisting of all closed simplexes of T 
which lie in N ,  and intersect h(Q,+) and all of those closed simplexes of 
the [n/2]-skeleton of T which lie in N ,  and do not intersect Qo-. Suppose 
that P ,  is the dual polyhedron consisting of those simplexes of the 
barycentric subdivision of T which lie in N, and have no vertices in P. 
It includes firstly all simplexes of the barycentric subdivision lying in N ,  
which intersect Qo-, and secondly those simplexes of the ( n  - [n /2]  - 1)- 
skeleton of that subdivision which do not intersect P nor h(Q,+). (This 
is not correct with respect to the simplexes which intersect the boundary 
of N ,  , but we are not interested in those as we shall carry out all our 
constructions sufficiently far from the frontier of N, .) 

Notice that the following fact can be established by using Lemma 5.2.4 
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and the technique of proof of Infinite Engulfing Theorem 4.14.1. 
(Lemma 5.2.4 serves the purpose of the ULC assumptions in that 
technique.) 

Fact. Suppose that n is a polyhedron lying either (a) in 
(En - Qo-) n N ,  or (b) in En - h(Q,+) n N ,  and finite outside any 
neighborhood of E"l. We suppose that in Case (a) 

and in Case (b) 

dim(I7 n (E" - < [n/2]. 
Then, there exists an ~/3-homeomorphism f :  En --t En which is the 
identity outside N ,  and on h(Q,+) u Qo- and such that n, with the 
exception of some finite part of it, lies in Case (a) infh(E:) and Case (b) 

By the above fact, we can construct ~/3-homeomorphisms 3 and 
J*: En -+ En which are the identity outside N ,  and on h(Ql+) u Qo- so 
that Jh(Q,+) 3 P n N,, and f*(Qi /2 )  3 P, n N,, for some E' > 0. 

The  next fact follows from the trick of Stallings which was used five 
times in Chapter 4. The first time the trick was used was in the proof of 
Theorem 4.4.1. (See the proof of Statement A in Section 4.13.) 

If U and U ,  are two regions in En - Ek-l which contain 
(P n N;)  u h(Q,+) and (P* n N,, )  u Qo- respectively, then there exists 
an ~/3-homeomorphismf: En + En which is the identity outside N ,  and 
on (P n N,.) u h(Ql+) u (P, n N,,) u Qo- and is such that f( U )  u U ,  
contains some neighborhood of Bk-l in En. 

In accordance with the above fact we can construct an ~/3-homeo- 
morphism f: En -+ En which is the identity outside N ,  and on 
(P n N, , )  u A(&+) u (P, n N, , )  u Qo- by taking fh(Int Qo+) for U 
and J*(Int Q G ~ )  for U ,  . Then, f3h(Q0+) UJ.+(Q~/~)  contains some 
neighborhood of Bk-l in En and so f;'f/'h(Q,+) u QG2 also contains 
some neighborhood of Bk-l in En. Thus, f;;'fJh(Q$) contains some 
neighborhood of Bk-l in QPI2. Since, in addition, f;y3 is an c-homeo- 
morphism and is the identity outside N ,  , we can take it as the required 
f and the proof of Engulfing Lemma 5.2.1 is complete. 

in f(QT/J * 

Fact. 

REMARK 5.2.4. Closely related to the 8-statements proved in this section 
are the so-called y-statements. See [Lacher, 51 for a succinct discussion of the 
y-statements. Also see Exercise 5.5.2 for the y-statement and a discussion. The 
purpose of this remark is to point out that the following proposition, which 
includes many y-statements, is a consequence of the techniques of this section. 
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Proposition 5.2.1. Suppose that h: B: + En, k < 2/3n - 1, is a topological 
embedding such that h 1 (B: - B"l) and h I Bk-l are locally flat. Then, h is 
locally flat. 

The idea of the proof of Proposition 5.2.1 is basically the same as that described 
for Theorem 5.2.1. First, one carries h(Bk--l) back to B"l. However, this time 
we cannot push the image of Bk, up into ET staying fixed on Bk-l. Even so, the 
same collapsing-and-expanding technique and the same meshing technique 
will suffice to move the image of B r  back to Bk, . The onIy difference is that in 
this case the meshing technique requires a better engulfing lemma. The following 
lemma will suffice. 

Suppose that h: E: + E: is a closed embedding which 
takes Ek--', k < 2/3n - 1, into itself such that h I N = 1 for some neighborhood N 
of Bk-' in E"l. Then for each E > 0 there is an +homeomorphism f :  En -+ En 
which is the identity outside the c-neighborhood of Bk-I and on E"-' such that 
f (h(1nt E:) Bk--') contains a neighborhood of Bk-l relative to B: . 

Lemma 5.2.5 will follow from Infinite Engulfing Theorem 4.14.2 by 
letting (En, Ek-l, h(Int EY), B: - Bk--') correspond to (M,  g, U, P ) .  Certainly, 
h(1nt ET) is ULC2"-"+l. Since En - Ek-l has the homotopy type of Sn-k, 
it follows that En - Ek-l is ULCn-k-l. Thus, Theorem 4+14.2 applies whenever 
2k - n + 2 < n - K - 1 or k < 2/3n - 1 as hypothesized. One can easily 
construct the necessary short homotopy which pulls B: - Bk-1 through 
E" - EL--' into h(1nt EY). (See [Cernavskii, 61.) 

(The author has recently seen that the following fact can 
be established by using the technique of this section along with Exercise 3.3.3. 
The proof can be accomplished for n = 3 and n = 4 because the hypothesis 
allows one to avoid the engulfing part of the technique of this section.) Let An 
denote the standard n-simplex spanned by the origin and the unit vectors in En 
and let f: An + En, n arbitrary, be an embedding such that f I An - An-3 is 
locally flat. Then, there is a continuous function c(x): An + E: , c(x) > 0 for 
x E A n  - On-3,  for which the existence of a locally flat c(x)-approximation 
g :  On -+ En off implies that f is locally flat. 

Engulfing Lemma 5.2.5. 

EXERCISE 5.2.1. 

5.3. TAMING EMBEDDINGS O F  PL MANIFOLDS 

A R O U N D  THE BOUNDARY IN ALL CODIMENSIONS 

As the title advertises, in this section we are not going to tame 
embeddings everywhere, but  are going to concentrate on taming around 
the boundary of the ambient manifold. W e  will return to tame every- 
where in Section 5.5. Most of the main ideas of this section were 
developed in [Rushing, 2, 41, although the present form of the work of 
this section has not appeared in print elsewhere. 
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A topological embedding f :  M k  -+ Nn of the PL k-manifold M 
into the PL n-manifold N is said to be allowable i f f  -l( aN) is a PL 
( k  - 1)-submanifold (possibly empty) of aM. A manifold pair ( N ,  M )  
is said to be allowable if the inclusion of M into N is allowable. Notice 
that under the definition of “locally homotopically unknotted” given in 
the last section, it makes perfectly good sense to speak of an allowable 
embedding f :  Mn-, -+ Nn as being locally homotopicially unknotted 
at points of Int( f -l( a l v ) ) .  

The  following is the main theorem of this section. 

Taming around Boundary Theorem 5.3.1. Let 

f: Mk-+ Nn, n 2 5,  

be an allowable embedding (proper embedding if n - k = 0, 1, or 2) of the 
PL k-manifold M into the PL n-manifold N such that f I M - f -l( aN) 
is locally jlat and f If -I( aN) is PL. In  the case that k = n - 2, suppose 
further that f ( f  -l( aN)) is locally jlat in aN and that f is locally homo- 
topically unknotted at points of Int(f-l( aN)). Then, given E > 0, there 
exists a neighborhood U off-’( aN) i nM and an +push e ,  of ( N ,  f ( f  -l( aN))) 
which isjxed on aN such that elf I U:  U -+ N is PL. 

The  rest of this section will be organized as follows: First we will state 
and prove a lemma, and then prove Theorem 5.3.1 for the codimension 
zero case. After that, we will prove several other lemmas and conclude 
by proving Theorem 5,3.1 for the other codimensions. 

Uniqueness of Collars Lemma 5.3.1. Let M be a topological mani- 
fold and let c,: Bd M x [0, I]  ---f M and c,: Bd M x [0, 13 -+ M be 
collars of Bd M in M ,  that is, Ci , i = 1, 2, is a homeomorphism of 
Bd M x [0, I] onto a neighborhood of Bd M in M such that Ci(x, 0 )  = x 
for all x E Bd M (see Fig. 5.3.1). Then, given E > 0, for some s > 0 there 
is an €-isotopy e, , 0 < t < s, of M such that 

(1) eo = 1, 

I I  I I 

Ed M Ed  M Figure 5.3.1. 
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(2) e ,  1 B d M u  ( M -  (C,(Bd M x [0, 13) u C,(Bd M x [0, 11))) =1, 
(3) e,C, 1 Bd M x [0, s] = C, 1 Bd M x [0, $3. 
PROOF. Let e , ,  0 f t < s, be defined to be the identity on 

M - (C,(Bd M x [0, 11) u C,(Bd M x [0, l])), and let e ,  be defined 
to be C,(C,)-l on C,(Bd M x [0, t]). It remains to define e ,  on 
C,(Bd M x [t, 11) U C,(Bd M x [0, 11) - C,(Bd M x [0, t]). Define a 
homeomorphism f,: Bd M x [t, I] - Bd M x [0, 11 on each fiber 
x x [ t ,  13 by taking (x, t )  to ( x ,  0) and (x, 1 )  to itself and extending 
linearly. Let 3,: C,(Bd M x [t, 11) - C,(Bd M x [0, 13) be defined 
byf, = C, f1(Cl)-l. Now extendf, over 

C,(Bd M x [0, 13) - Cl(Bd M x [0, 11) 

by the identity. Next, denote (f,)-l: Bd M x [0, 13 - Bd M x [t, 11 
by f, . Let j2: C,(Bd M x [0, I]) - C,(Bd M x [t,  I]) be defined by 
3, = C,f,(C,)-l. Extendf, over C,(Bd M x [0, 11) - C,(Bd M x [0, 11) 
by the identity. Finally, define el on 

C,(Bd M x [t, 11) u (C2(Bd M x [0, I]) - Cl(Bd M x [0, t ] )  

to befJ,. It is easy to check that e ,  is the desired isotopy. 

Proof of Theorem 5.3.1 for Codimension Zero Case. (It is not 
necessary to assume n 2 5 in this case.) We are given a proper embedding 
f: Mn + Nn of the PL n-manifold Mn into the P L  n-manifold Nn such 
thatf I aM is PL. By Corollary 4.4.4 or by Remark 4.4.1, there is a P L  
Collar C, of aM, that is, there is a PL homeomorphism C,: aM x I -+ M 
such that C,(x, 0) = x for all X E  aM. Also, there is a P L  collar 

f 
aM x I - a N  x I 

t cl c2 t 
Diagram 5.3.1 M * N  

C,: aN x I-+ N of aN. There is a natural P L  homeomorphism 
3: aM x I - aN x I defined by 3(x, t) = ( f ( x ) ,  t ) .  Then 

fC3-l: aN x I + N 

is also a collar of aN. Now given E > 0, Lemma 5.3.1 gives for some 
s > 0 an €-push e , ,  0 < t < s, of ( N ,  aN) such that e ,  I Bd N = 1 
and Consequently, 
e,f  I C,f-l(Bd N x [0, 11) = C,fC:' I C,f-l(Bd N x [0, 11) which is 

e,fCJ-l I Bd N x [0, s] = C, 1 Bd N x [0, s]. 
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PL. Hence, U = C,J-l(Bd N x [0, 11) is the desired neighborhood 
and e ,  is the desired e-push. 

It is quite naturial to wonder whether a similar argument to 
that given for codimension zero will work in other codimensions. The obvious 
attempt involves using Theorem 1.7.7 to get certain relative collars and then 
applying Lemma 5.3.1. A difficulty results, however, from the fact that one of 
these collars is only topological and not PL. Attempts by this author at resolving 
this difficulty (for instance, by trying to prove a certain stronger relative collaring 
theorem) have not panned out. 

The  rest of this section is devoted to handling the other codimensional 
cases in a different manner. We will again in Section 5.5, in the process 
of proving general taming theorems, employ the technique we are about 
to develop. 

Before proving Theorem 5.3.1 in codimensions other than zero, we will 
give some definitions and establish four preliminary lemmas. If S is a set 
(which may or may not be contained in the polyhedron 1 J I), then 

N(S ,  J )  = {U E J 1 a is a face of a simplex of J which meets S}, 
C(S, J )  = {U E J I u n S = 0}, and aN(S, J )  = N(S ,  J )  n C(S, 1). 

If K is a subcomplex of J ,  we say that K is a full subcomplex of J if 
u n K is a simplex for each u E J .  (This definition is obviously equivalent 
to the one given in Section I .6, B.) If K is a complex, then u E K is called 
a principle simplex if o is not a proper face of any simplex of K .  If 
X and Y are subpolyhedra of some larger polyhedron, recall that in 
Section 1.6, C, we defined 

REMARK 5.3.1. 

XR = Cl(X - Y )  and Y R  = Cl(X - Y )  n Y 

The  following lemma was first proved in [Cohen, I]. 

Natural Parameterization Lemma 5.3.2 (Cohen). If K and L are 
full subcomplexes of the complex J ,  then every simplex u of N(K - L, J )  is 
uniquely expressible as 01 * /3 * y, where a E L R  , E C(LR , KR) = C(L, K )  
and y E BN(KR ) N ( K  - L, 1)). Furthermore, if u is a principle simplex, 
then13 # 0. 

PROOF. 

(1) 

(1*) 

Notice that if we can show that 

L R  is full in K R  and that KR is full in N(K - L, J )  (see Fig. 5.3.2), 

every simplex u E N ( K R ,  N ( K  - L, J ) )  is uniquely expressible as 
then it follows immediately that 

u = 01 * p * y  where OL EL, ) p E ~ ( L R ,  K R )  and y E aN(KR N ( K  - L, J ) ) .  
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J 

Figure 5.3.2 

Moreover, it follows that if u is a principle simplex of N(KR , N(K - L, J ) ) ,  
then ,9 # 0. 
If furthermore we can show that 

(2) N(K - L, J )  = W K R  9 N ( K  - L, J ) ) ,  
then the proof will be complete. 

Since L is full in J, it follows immediately that LR is full in K R  because 
the only place a simplex of K R  can hit L is in LR , since LR = K R  n L 
by definition. Also, since K is full in J, it will follow immediately that 
KR is full in N(K - L, J) if we can show that 

(3) K R  = K n N ( K  - L, J ) .  
I n  fact, notice that we will be through if we establish (3), because (2) 

also follows immediately from (3). Since K R  = N(K - L, K )  = 
N ( K  - (L n K ) ,  K) it will suffice to show that 

K n N(K - ( L  n K ) ,  1) = N(K - ( L  n K ) ,  K ) .  

If a is a principle simplex of N(K - (L n K), K), then u is a simplex of 
K meeting (K - (L n K)) .  So a E K n N ( K  - (L  n K), J). If on the 
other hand, a E K n N(K - (L n K), J), then u E K and there exists a 
simplex T such that u < T E J and T n (K - (L  n K)) # 0. Then, 
since K is full, T n K = 7, is a simplex which clearly contains 
u u (T n K). Thus, T, is a simplex of K such that a < T, and 
T, n (K - (L  n K)) # 0. Hence, a E N ( K  - (L n K ) ,  K) .  

The  next definition generalizes very nicely an idea originally due to 
Whitehead. Let a = (O,O), b, = (1,0), and b, = (1, 1) E E2. Let 
d = a t b, * b, C E2. If K and L are full subcomplexes of J, then the 
natural parameterization of N(K - L, J )  is the unique simplicia1 
mapping q: N(K - L, J) -+ d such that ~ ( a )  = a, q(8) = 6,  , and 
~ ( y )  = b, for every simplex a * /3 * y E N ( K  - L, J ) .  

The  next lemma first appeared in [Rushing, 21. 
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Crushing Lemma 5.3.3. Let K and L be full subcomplexes of the 
complex J ,  let N = N ( K  - L, J’) and let C C I J I be a compact set such 
that C n KR C L R  (see Fig. 5.3.3). Then, given E > 0, there is a C-regular 
neighborhood N ,  of K mod L in J and an €-push e ,  of (I J I, LR) keeping 
KR U Cl(l J I - I N 1) $xed such that (e , (C)  n N , )  C LR . (Thus, e, 
mushes C n N against [ J I - N . )  

I J I  

Figure 5.3.3 

PROOF. (We will just get an isotopy; however, it will be clear from 
the proof that we can get an E-push.) Let 7: N ( K  - L, J‘) + A be the 
natural parameterization of N ( K  - L, J‘). Consider the set 
q(C n N )  C A .  Since q(C) n ( (a  * b,) - a )  = 8, if by = (1, y), then 
there is a y > 0 such that q(C) n b, * by = 8. Let S = a * b, * by . 
Then, N ,  = r]-l(6) is a regular neighborhood of K mod L in J ;  however, 
C may intersect N ,  off of L,  . We denote by S, the segment (E, 0) * b, , 
0 < E < 1 .  Let $ be a continuous function defined on [0, 11 such that 
#(O) = 0, $(E) > 0 for E > 0, and if x, E S, is the point such that 
dist((E, O),x,)/dist((E, 0), b,) = $(E), then (E, 0) * x, n q(C) = 0 for 
E > 0. (We can assume that by = x1 .) Let A denote the arc consisting 
of the points x , ,  0 < E \< 1. Then, there is an obvious way to define 
an isotopy h,  of A which is the identity on ad such that h, = 1 and which 
when restricted to a segment S,  slides the point x, “linearly” to the point 
S, n a * b y .  Thus, if W is the region bounded by the simple closed 
curve a I b, u b, * 6, u A,  we see that the isotopy h ,  takes W onto 6. 

We are now ready to define an isotopy e ,  of 1 J I that takes q-l( W )  onto 
N ,  = q-l(S). We define el to be the identity on KR U Cl(l J 1 - IN I )  
and so it remains only to define e ,  on the rest of N = N ( K  - L,  J’). Let 
u be an arbitrary simplex of N ( K  - L, J’). We will show how to define 
e, on u. Recall that u = 01 * /3 * y as defined above. Let I be a segment in 
the join structure between 01 * /3 and y. Then, I is mapped isomorphically 
onto a unique S, under 7. Thus, we define e ,  on 1 by el 11 = v-lhtvll.  
This completes the proof. 

Let F be the k-dimensional hyperplane of En determined by 
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xk = ... = xn-, = 0. We let Y k  = Ik-l x 0 x *.. x 0 x I C F .  Also, 
weletF, = F n E y , F -  = F n E I l , f :  =.$knF,andff  =fkr7Fli._. 

Straightening Lemma 5.3.4. Let f :  f: -+ ET , n 2 5,  be an em- 
bedding such that f I Ik-l = 1 and f (1," - Ik-I) is localbJlat in Ey - En-'. 
I n  the case that k = n - 2, suppose further that f is locally homotopically 
unknotted at points of Int Ik-'. Then, there exists a homeomorphism 
g:  ET --tf EY which is the identity on En--' and outside some compact 
set and is such that gf 1 1: = I where 1; = 1: i f  k < n - 3 and where 1: 
is the upper half of a k-cell in the interior of, and concentric with Ik,  i f  
k = n - 2 m n  - 1. 

PROOF. Recall that we defined H ,  , Qt+, Qt-, and Q(t, t') in the last 
section. We may assume that f ,  in fact, embeds 1; - Ik-l in Int 8,'. 
Letj: ET + En be an embedding such t h a t j  1 Ql+ = 1 and 

( (iQ(3, l)), i(Q(0, i))) = (Q(0, I ) ,  Q(- 1,O)) .  

Now the technique of proof of Theorem 5.2.1, in the last section, gives 
us a homeomorphism g:Q21 -QZ1 which is the identity on 
and outside some compact set and is such that gf I 1: = 1. The reason 
that we have that g is the identity on K ,  is that the homeomorphism r 
in the proof of Theorem 5.2.1 may be assumed to be the identity on 
Qz, . We are able to get that gf 11: = 1 for = 1: when k < n - 3, 
because in that range we are able to apply Engulfing Lemma 5.2.1 and 
do not have to employ the Stallings trick. (If Section 5.2 had been 
developed exactly as Cernavskii presented it in [5], then we would not 
have had this stronger result in codimension three and so would only 
have been able to prove Theorem 5.3.1 for proper embeddings rather 
than allowable embeddings.) Now it is easy to see that g = j-lgj is the 
desired homeomorphism. 

Collaring Lemma 5.3.5. Let Rk-l be a PL-manifold of dimension 
k - 1 which is contained in the boundary of a k-dimensional PL-manifold 
M k  and let E > 0 be given. Then, there is a PL-homeomorphism 
A: R x [0, I]  -+ M such that 

(a) q r ,  0) = r ,  
(b) diam(A(r x [0, 11)) < E ,  and 
(c) X(R x [0, 11) is a neighborhood of R in M. 

PROOF. Let N be a regular neighborhood of R in M .  Let 
q: aM x I --t M be a PL collaring of aM in M ;  that is, q(x ,  0) = x for 
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all x E aM. It is easy to see that N and q(R x I )  are both HZ-regular 
neighborhoods of R modulo aR such that there is a triangulation J of M 
for which N and q(R x I )  satisfy condition p given in Section 1.6.5,C. 
Hence, by Part 2 of Theorem 1.6.5, there is a PL homeomorphism 
h: 7(R  x I )  - N such that h ( ~ i ( x ,  0)) = x for all x E R. Thus, 
A: R x I -+ M defined by X(x, t )  = hq(x, t )  is the desired PL homeo- 
morphism. (Condition 2 of the conclusion follows by choosing the regular 
neighborhoods small and by uniform continuity.) 

Proof of Theorem 5.3.1. First let us prove the theorem for 
n - k 2 3. We will leave the easy modification of this proof necessary 
to handle the cases n - k = 1 and 2 as an exercise. We will not 
worry about getting an €-push, but will simply get a push. An €-push 
can be obtained by making small choices for our triangulations, neighbor- 
hoods, collars, and so forth. First, we will get a push e ,  which satisfies the 
conclusion except for being the identity on aN, although it will be the 
identity onf(f-l( aN)) and outside a small neighborhood off(f-l( aN)). 
Then, we will show how to modify the proof so as to have e, be the 
identity on aN. 

Let R = f-l( aN) and suppose that A = &o Hk-l is a decomposition 
of R as a “handlebody” assured by Theorem 1.6.12. By Lemma 5.3.5, 
there is a PL  homeomorphism A: R x I -+ M (I  = [0, 13 here) such 
that X(r, 0) = Y ,  diam(h(r x I ) )  is small and A(R x I )  is a neighborhood of 
R in M. Now consider the collection A(Ho x I ) ,  X(Hl x I ) ,  ..., X(H, x I ) .  
This is a covering of U = X(R x I )  with k-balls. Note that it follows 
from Theorem 1.6.12 that h(Hi x I )  meets aM u (UiLi X(H, x I ) )  
in a (k - 1)-ball. 

We will get a sequence of isotopies e,i, i = 0, 1, ..., p,.of N onto itself 
such that eoi = 1, e t  I f (R )  = 1 ,  and elie:-’ elOfI u”l0 A(H, x 1) is 
PL. We will construct the ef so that e,i 1 e:-l e:f( Uf:: A(H, x I ) )  is 
the identity. Let A,: aN x I -+ N be a PL collaring of aN. Then, 
Do = h, ( f (Ho)  x I )  is a PL k-ball in N such that Do n aN =f(Ho). 
Let V be the interior of a regular neighborhood off(Ho) in aN. Then, 
( V , f ( H o ) )  w (En--l, P1) and (A,( I/ x [0, l ] ) , f ( H , ) )  w (E: , P-l). Let 
g: A(Ho x I )  - Do be a P L  homeomorphism such thatg I A(##@ x 0)  = 
f 1 A(Ho x 0). Then, by applying Lemma 5.3.4, we can get an isotopy 
e,O: N -++ N such that eoO = 1, e,O 1 aN = 1 and e:fl X(Ho x I )  = g. 
Thus, elof] A(Ho x I )  is PL. 

Now, we will show how to construct el1 and then it will be clear how 
to construct e ) ,  i = 2, 3, ..., p.  Since N is a P L  manifold and 
elOf(A(Ho x I ) )  is link-collapsible on Cl(A,( f (R)  x I )  - A*(f(Ho x I ) ) ,  
it follows from Part 1 of Theorem 1.6.5 that we can choose a regular 
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neighborhood of el"fX(Ho x I ) )  mod Cl(X,(f(R) x I )  - X,(f(Ho) X I ) ) .  
Hence, KO is a P L  manifold which collapses to elof(h(H0 x I ) )  and so 
is an n-ball. Furthermore, it follows from Theorem 1.6.5 that KO meets the 
boundary of N regularly, that is, in an (n - l)-ball. Now apply Lemma 
5.3+3 where the compact set C of that lemma is e0lf(& h(H, x I ) )  
and get a regular neighborhood K,O of 

e1"fWo x I ) )  mod C*P*(f(W x 4 - h*(f(Ho) x I ) )  

g,le,of(U;=, A(H, x I ) )  ~ K , O  = x,(~(H,) x I )  n (u;=, A,( .~(H,)  x I ) ) .  
and an isotopy &,l which is the identity on X,(f(R) x I )  and such that 

We now form a new P L  manifold N, = C l ( N  - K,O). Then, we have 
the embedding Zlle,ofi h(H, x I ) :  h(H, x I )  -+ Nl and we have the 
PL k-ball D, = X,(f(H,) x I) C Nl such that 

Zllelof(h(Hl x I)) n alv, = D, n alv, 

is a (k - 1)-ball. Thus, by applying Lemma 5.3.4, similarly to the way 
we did in the construction e t ,  we get an isotopy e",l of N ,  which is the 
identity on aiV, and is such that 611E11el('f 1 A(H, x I )  is PL. Now, extend 
e",l to N by way the identity. Then, el1 = e",lgll is the desired isotopy 
and we see our way clear. 

T o  finish the proof for n - k 3 3, it remains only to show why we 
can assume that e ,  is the identity on aN. Let K be a regular neighborhood 
of aN mod f (R). Then by Lemma 5.3.3, there is a regular neighborhood 
K ,  of 8N modf(R) and a small isotopy h ,  of N keeping aN fixed such 
that k , f ( M )  n K ,  =f(R). [The compact set C of Lemma 5.3.3 is 
f(M).J Now, N ,  = C l ( N  - K,) is a PL manifold and h,f: M -+ N ,  
is an allowable embedding. Thus, we can go through the preceding proof 
and get an imtopy 6, of N, such that ClhJ I U: U -+ N, is PL and 
a, If(R) = 1 .  But, it follows from Remark 1.6.5 that K ,  is a collar of 
aN in N pinched at f ( R )  and so we can use K ,  to extend a, to N so that 
e, I aN = 1. Then, c, = a,h, is the desired isotopy. 

Formulate the necessary modification of the above proof to 

establish Theorem 5.3.1 for n - K = 1 and 2. 
EXERCISE 5.3. I .  

5.4. PL A ~ O X M A T I N C  TOPOLOGIC#L EMBEDDINGS 

The  problem of PL approximating topological embeddings has 
become an important part of the theory Q€ topological embeddings. In  
this section, we will discuss the work which has been done in that area 
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as well as develop an approximation technique fundamentally due to 
Homma. The approximation theorem proved in this section will be used 
in the next section. The  problem of P L  approximating topological embed- 
dings is simply this: 

When can a topological embedding of one polyhedron into another be 
approximated with a PL  embedding? 

We have already seen that a PL  approximation theorem can play 
an important role in the proof of a taming theorem. Specifically, recall 
that the key two parts of the proof of taming Theorem 3.6.1 involved 
showing “solvability” and “denseness.” T h e  “denseness” part simply 
required showing that, in the trivial range, any topological embedding 
of a polyhedron into a P L  manifold can be approximated with a PL 
embedding. This followed in that range by a straightforward application 
of general position. 

The P L  approximation problem becomes much more involved above 
the trivial range. Homma [2] attempted to show that a topological 
embedding h: M 4 N of a closed P L  m-manifold M into the interior of 
a P L  n-manifold N can be approximated by a PL embedding g: M -+ N 
whenever m < n - 3. Berkowitz [ I ]  showed that Homma’s proof 
contains certain difficulties. A portion of [Homma, 21, the most difficult 
part, was restated and published as [Homma, 31. However, the main 
difficulties of [Homma, 21 are also present there. Berkowitz [ I ]  was 
able to modify Homma’s technique so as to establish the result whenever 
m < f n  - 4. (His proof appears in abbreviated form in [Berkowitz 
and Dancis, 11.) Later Berkowitz [2] adapted Homma’s techniques to 
prove that a. topological embedding of a (possibly noncompact) poly- 
hedron into a PL manifold can be approximated by a P L  embedding 
in the metastable range. (That proof of Berkowitz’s appears in 
abbreviated form in [Berkowitz and Dancis, 21.) Weber [ I ,  21 had 
previously established, by different techniques, that result for compact 
polyhedra. I t  should be remarked that [Homma, 31 was followed up by 
[Homma, 41 which establishes a different sort of approximation theorem. 

Recently proofs of codimension three P L  approximation theorems 
have been announced. CernavskiI [7] announced that he could approxi- 
mate topological embeddings into En of cells and spheres with P L  
embeddings in codimensions greater than two. A fairly detailed proof 
of this result appeared in [Cernavskil, 81. However, there seems to be a 
gap in Cernavskii’s proof resulting basically from the fact that he tried 
to take an HZ-relative regular neighborhood without having the link- 
collapsibility condition. Bryant [3] assumed CernavskiVs approximation 
theorem and proved PL  approximation theorems for allowable 
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embeddings of P L  manifolds and for embeddings of polyhedra into 
the interior of PL manifolds in codimensions greater than three. 
CernavskiI [9 ] ,  in a supplement to his article, sketched a proof that 
embeddings of manifolds can be PL approximated in codimensions 
greater than three. Miller [I]  filled in CernavskiI’s gap and gave a proof 
of the approximation theorem for cells in codimensions greater than 
three. Miller also obtained the approximation theorem for manifolds. 

A couple of different types of approximation theorems have been 
proved recently. Price and Seebeck [l,  21 have obtained a codimension 
one approximation theorem for locally nice embeddings of manifolds 
with a flat spot, and Stan’ko [I] has proved that codimension three 
embeddings of compacta can be approximated by locally nice embeddings. 
The  rest of this section will be devoted to proving the following metas- 
table range approximation theorem for manifolds. The  proof will be 
carried out by restricting [Homma, 21 to the metastable range where 
everything goes through nicely. 

Metastable PL Approximation Theorem 5.4.1 (Homma). If M is 
a (possibly noncompact) P L  m-manifold without boundary, Q is a PL 
q-manifold where m < gq - 1, h: M --t Int Q is a topological embedding 
of M into Q and E :  M ---t (0, m) is a continuous mapping of M into the 
positive real numbers, then there exists a P L  homeomorphism g :  M --+ Q 
such that dist(g(x), h(x) )  < ~ ( x )  for  each x E M. 

Furthermore, i f  M ,  is a PL m-submanifold of M and i f  h 1 U is PL where 
U is a neighborhood of C l ( M  - M,), then g I C l ( M  - M,) may be 
taken to be h j C l ( M  - M J .  

Although Homma does not say so in his papers, it is quite evident 
that he was familiar with the Penrose-Whitehead-Zeeman technique 
presented in Section 4.7, because Homma’s ingenious technique is a 
modification of that technique. It seems that the best way to convey 
Homma’s technique painlessly is to exhibit it as such a modification. 
Hence, before beginning the proof of Theorem 5.4.1, let us reconsider 
Metastable Range Embedding Theorem 4.7.2. 

Suppose that M is a closed PL m-manifold and that h: M + Int Q is 
a map taking M into the interior of the PL q-manifold Q where 
m < gq - 1. The  Penrose-Whitehead-Zeeman Theorem says that if 
M is (2m - q)-connected and Q is (2m - q + 1)-connected, then h can 
be homotoped to an embedding g .  

Recall that the proof of the Penrose-Whitehead-Zeeman Theorem 
went basically as follows (see Fig. 5.4.1). First homotop h to a map f in 
general position. Let S(f) denote the singular set off. Then since M is 
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L 

+& 

Figure 5.4.1 

(2m - q)-connected and the cone V(S( f ) )  is of dimension at most 2m - q, 
V ( S ( f ) )  can be mapped into M keeping the base fixed. Hence, by 
general position there is an embedding 4 taking W(S(f))  into M which 
keeps S(f) fixed. Now consider the cone V(f(+(V(S(f))))) .  Since it is 
at most (2m - q + 1)-dimensional and since Q is (2m - q + 1)- 
connected, we may map V(f (4(W(S( f ) ) ) ) )  into Q keeping the base fixed. 
By general position we can obtain an embedding p of V(f(4(g(S(f))))) 
into Q which keepsf(#(V(S(f)))) fixed such that 

$ 

P(W(b(Ww))))))  n f (W = f(b(V(f)))). 
Take a second derived neighborhood BM of $(U(S( f ) ) )  and a second 
derived neighborhood BQ of p(%‘(f(+(V(S(f)))))). Of course, BM and BQ 
are both balls. The  embedding g is then taken to be f outside of BM and 
to be a “conewise” extension off 1 8BM on B ,  which properly embeds 

In  order to view Hornma’s technique as a modification of the above 
Penrose-Whitehead-Zeeman technique, one should visualize the last 
part of the above technique in a slightly different manner. In particular, 
suppose that 4 and p have been constructed just as above. There is 
a natural way to construct a P L  manifold A? which is homeomorphic to 
M/+(V(S(f))) .  Specifically, A? = (M - Int B,)) U 8,  where 8 ,  is the 
cone W(Bd B,). There is a natural P L  map ?i: M - A? which is the 
linear extension of the map which takes vertices of M - (Int BM) to 
themselves and which takes vertices of 4(V(S(f))) to the cone-point 
of 8,  (see Fig. 5.4.2). Also, there is a PL  homeomorphism A: A? - M 
which is the identity on M - Int BM and which takes 8 ,  onto BM. 
Analogously, define 

BM in BQ . 

(1) = (Q - Int B,) u 8, where 8, = V(Bd BQ),  
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Figure 5.4.2 

(2) 
(3) 
I t  is easy to see that $: J? + & defined by t,h = v+-l is a PL embedding 

of &f into &. Thus, the g required for the conclusion of the Penrose- 
Whitehead-Zeeman Theorem may be taken to be Xy4h-l. 

We now give a couple of definitions before beginning the proof of 
Theorem 5.4.1. First, let us recall the definition of i-LC given in 
Section 5.2. A space X is i-locally connected at a point x E X (i-LC 
at x) if every open set U containing x contains an open set V containing x 
such that every mapping of Si into V is null-homotopic in U. A space 
is i-LC if it is i-LC at every point. A space is locally contractible at 
a point x if every open set U containing x contains an open set V 
containing x such that V is contractible in U to a point. The  space is 
locally contractible if it has the property at every point. 

EXERCISE 5.4.1. (a) Every manifold is locally contractible. (b) Locally 

a PL map r": Q ++ &, and 
a P L  homeomorphism 1: & -++ Q. 

contractible implies i-LC for all i. 

Proof of Theorem 5.4.1 (Hornma's approximation technique). (We 
will not worry about showing that the approximation g which we will 
obtain can be taken to agree with h on M ,  , because it will be obvious 
how to prove this added condition once one understands the proof of the 
absolute case.) The  hypothesis of Theorem 5.4.1 gives us a topological 
embedding h: M --t Q. (Recall that the hypothesis of the Penrose- 
Whitehead-Zeeman Theorem only gave us a map h: M + Q; however, 
we shall see that by requiring h to be an embedding, one eliminates the 
necessity of any connectivity conditions on M and Q.) It is easy to find 
an open set U in Q such that h(M)  is a closed subset of U. Of course U 
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inherits a PL structure from Q. From now on assume that Q = U so that 
we have that h: M -+ Q is a closed embedding. Again homotop h a small 
amount to a closed general position P L  map f and consider the singular 
set S ( f ) .  This time, instead of taking the cone over S(f), we take the 
mapping cylinder C, off lS(f) .  It is instructive to think of C, as being 
a bunch of cones which are stuck together; that is, y,: C, +f(S( f )) is the 
projection, the point inverses under y, are cones. Furthermore, since f 
approximates the embedding h, the base of each cone y t ' ( x )  is small in 
diameter. Hence, one can use the local contractibility (more particularly, 
the local &connectivity) of M to map C, into M keeping the base fixed. 
(Thus, because f approximates an embedding closely, the local contrac- 
tibility of M serves the purpose here of the connectivity condition on M 
in the Penrose-Whitehead-Zeeman technique.) The way one uses the 
i-LC property to map C, into M keeping the base fixed goes as follows: 
First, get a fine triangulation T of C, so that y,: C, -+ f (S( f )) is sim- 
plicial. Map each vertex o of T to some point in yt'(v).  Now, extend the 
map to the 1-skeleton of T using 0-LC, then extend to the 2-skeleton by 
using 1-LC, and so forth. Notice that the image under this map of yt ' (x)  
is small in diameter for each x ~ f ( S ( f ) ) .  As before, general position 
gives a P L  embedding +: C, 4 M which keeps the base fixed. Further- 
more, +yt ' (x )  is small in diameter for each x E ~ ( S (  f )). 

Now consider f(+( C,)) and consider the mapping cylinder C, where 
r:f(+(C,))  - +(f(S(f))) is defined by r = $y,+-'f-'. (The mapping 
cylinder over a mapping cylinder, C, , plays a role here analogous to the 
role played by the cone over a cone in the Penrose-Whitehead-Zeeman 
technique.) Let y,: C, -+ +(f(S(f))) be .the projection. This time local 
contractibility of Q gives a map of C, into Q which keeps the base 

f(+(C,)) of C, fixed and such that the image under this map of y;'(x) is 
small in diameter for each x E +(f(S(f))). General position gives an 
embedding p: C, -+ Q which is the identity on f(+(C,)) such that 
p(C,) n f ( M )  =f(+(C,)) and such that py;'(x) is small in diameter for 

Define r: +(C,) -+(f(S(f))) by r = +yt+-' (see Fig. 5.4.3). 
Suppose that we can find a PL manifold A?? which contains a copy of 
+ ( f ( S ( f ) ) )  as a subpolyhedron and a P L  map fi: M - A?? which extends 
r and which is a PL homeomorphism off of +(Ct), Also suppose we can 
find a PL homeomorphism A: i@ - M such that A+ approximates the 
identity on M. 

We have the P L  map 7,p-l: p(C,) - $(f(S(f))). Suppose that we 
can find a PL manifold which contains a copy of +(f(S(f))) as a 
subpolyhedron and a P L  map ?: Q - which extends y,p-' and which 
is a PL homeomorphism off of p(C,). In  addition, suppose that we can 

each x E +(f(S(f))). 
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Figure 5.4.3 

find a PL homeomorphism x: & --tf Q such that xr" approximates the 
identity on Q. 

Given a, &, A, +, x, and r", the proof of Theorem 5.4.1 is completed 
just as the conclusion of our formulation of the Penrose-Whitehead- 
Zeeman technique above. That  is, we define the PL embedding 
y5: as the desired approxi- 
mation. 

One will understand Homma's technique from the above presentation 
once he sees how to construct a, &, A, +, 5, and r". Their existence will 
follow from Lemma 5.4.1. Before stating and proving Lemma 5.4.1, it 
is necessary to make some definitions. 

A subcomplex L of a complex K is locally collapsible if for any 
simplex u of K, the set U{T E K I (I < T }  n I L 1 is collapsible. Let K 
be a complex and {Li}, be collection of finite subcomplexes of K such that 

-+ & by y5 = ?f+--l and we take g = 

N(L,,  K )  n N[L, ,  K )  C aN(Li , K )  n , K )  for i # j .  

Let {D,}, be a collection of points not in I K I. The  complex 

is denoted by K/{L,}J and is called the quotient complex of K with 
respect to {Li}j .  We define the projection mapping p :  K -+ K/{L,}, 
simplicially by defining p on the vertices of K as follows: (i) if D is a 
vertex of Li , then p(v)  = D, ; (ii) if D is a vertex of K - UAL,}, then 
p(v)  = v.  
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Let K be a complex and L a subcomplex of K. A derived subdivision 
of K with respect to L, denoted K‘(L), is defined inductively as follows: 
(i) For each simplex u E K - L, let a(.) be a point of Int o. 
(ii) The  set of vertices K’(L)O of K’(L) is {w I w is a vertex ofL} u 
{a(.) I 1.7 E K - L} .  
(iii) Assume that K’(L)i-l has been defined. Let 

K‘(L)i = K‘(L)”-’ u {u E L  I dim u = i} 

u {a(.) * T I u E K - L, T E K‘(L)”-l and T C Bd u}. 

(iv) 
If n is a PL mapping of a (possibly noncompact) polyhedron F onto 

a possibly noncompact polyhedron G such that T-’(x) is collapsible for 
each x E G, then the triple {F, G, n} is called a semi-forest. 

Let {F, G, T} be a semi-forest and let M be a P L  manifold such that F 
is contained in M as a closed subset. Let K C H, L be triangulations of 
F C M, G, respectively with T: K + L simplicial. Let H’(K) be a derived 
subdivision of H with respect to K. Let H(L) be the complex containing 
L as a subcomplex such that u is a simplex of H(L) if and only if 
(a) u E L or (b) o E (H‘(K)  - N(K, H’(K))) u BN(K,H’(K)) 
or (c) 1.7 = ( a o ,  ..., w,. , wo , ..., w t ) ,  where (w, , ,  ..., v,.) E L, 
(w,, , ..., wt) E H’(K) - K and there exists T E K such that 
T(T)  = ( w o  , ..., w,.) and T * (wo , ..., wt) E H’(K). 

+-l(x) 
is collapsible for x E I H(L)I - I L I. Thus, if {F, G, n} is a semi-forest, 
then { M ,  I H(L)I, +} is a semi-forest. 

Forms of the following lemma were proved independently by Cohen 
[2] and Homma [2]. The proof given here is essentially Berkowitz’s [2] 
unpublished formulation of Homma’s proof. 

Finally, if dim K = k ,  define K’(L) = K’(L)k. 

It is easy to show that (a) +-l(x) = n-l(x) for x E 1 L 1 and (b) 

Lemma 5.4.1. Let {F, G,  n} be a semi-forest such that for  a l l p  E G,  
diam n-l(p)  < S for  some fixed S > 0. Let M be a PL m-manifold without 
boundary with F contained in M as a closed subset. Then, there is a standard 
extension +: M -+ h? and a P L  homeomorphism A: A? --t M such that 
dist(h+, identity) < S (see Fig. 5.4.4). 

M\ 

Figure 5.4.4 
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(We will first construct a PL homeomorphism A: A??-+ M 
and not worry about the condition that dist(h+, identity) < 6. Then, 
at the end of the proof, we will indicate how we can obtain that condition.) 
Let K C H, L be triangulations of F C M, G respectively with rr: K -+ L 
simplicial. Let H(L), denote the barycentric subdivision of H(L). Let 
H’(K)+ denote a first derived subdivision of H’(K) such that 
+: H’(K),, -+ H(L), is simplicial. For each i, 0 < i < m, order the 
i-simplices of H(L): u ~ , ~ ,  uiS2, .... Let ai,, be the barycenter of uiVj.  
Let Ji be the index set for ui,,.  Consider the following sequence of 
quotient complexes: 

PROOF. 

(see Fig. 5.4.5). 

Since +-l(ao,j) is collapsible, LK(+-l(ao,j), H-l) is a PL-sphere. 
Hence, v,,, * Lk(+-l(ao,j), H.-l) is a PL ball in H, which is PL homeo- 
morphic to St(+-l(ao,j), H-l) under a homeomorphism which is the 
identity on Lk(+-l(a,,,), El). Let M ,  = I H ,  \.Then, there is a PL 
homeomorphism &,: M ,  -+ M such that 

(a) A,T,(x) = x, for X E  C l ( M  - uJo (Int St(+-l(a0,,), H-l))), and 
(b) A,T,,(x) E St(+-l(a,,,), iff x E St(+-l(a,J, Xl). 

Step 2. Let us assume the following PL fact. 

FACT 1. Hi I ni -.- n,+-l(ai+l,j) is full and locally collapsible in Hi 
for each j E Ji+l. 

Let Mi = I Hi I for 0 < i < m. By induction we can assume that Mi 
is a PL manifold which is PL homeomorphic to M. Thus, it follows from 
Fact 1 and the following PL fact that St(.rri *.. .rro+l(ai+l,,), Hi) is a 
PL ball. 

FACT 2. Let K 3 L be a triangulation of a PL manifold and its subpoly- 

Step 1. 

hedron P such that 

(a) L is full in K, and 
(b) L is locally collapsible in K. 

Then, St(L, K) is a regular neighborhood of P. 

An argument similar to that in Step 1 applies to show the existence 
of a P L  homeomorphism Mi+1 -+ Mi satisfying 
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Figure 5.4.5 
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Step 3. Since M ,  = I H(L)I, let A = A, A,: M ,  -+ M and we 
have our PL homeomorphism. 

Note that &(x) = x for any x 6 Int N(I K 1, H-l). Also note that 
because of Condition (b) of Step 2 and the fact that the interiors of 
St(r$ .-. ~,+-~(q+~,~) ,  Hi) are disjoint for j E Jifl, we can insure that 
dist(Ai7, identity) < 6 by choosing the mesh of H small enough in the 
preceding proof. 

5.5. &-TAMING ALLOWABLE EMBEDDINGS 

OF PL MANIFOLDS 

At the beginning of Section 3.6, we discussed some of the first work 
which was done on the taming of embeddings of general objects. I n  
particular, we discussed the taming in the trivial range of embeddings of 
polyhedra and PL manifolds. In  Sections 3.6, 3.7, and 3.8, proofs of 
certain trivial range taming theorems were given. In this section, we will 
first discuss generalizations to lower codimensions of the results just 
mentioned. Then, we will discuss and prove some such generalizations 
which were developed in [Rushing, 2-41. 

The  first significant work done on taming general objects in 
codimensions lower than the trivial range was by Cernavskii. This work 
was sketched in [Cernavskii, 101 and presented in detail in [Cernavskii, 21. 
The main result of these papers was that an embedding of a polyhedron 
into a combinatorial manifold which is locally flat on open simplexes is 
€-tame, in the metastable range. Unfortunately, in 1968 this author 
discovered a mistake in [Cernavskii, 21. Specifically, the mistake 
occurred in obtaining the homotopy pl? which was asserted to exist 
following Proposition ( H )  of that paper. The  error in Cernavskii’s 
method for obtaining plt resulted from the fact that he was not careful 
enough about choosing triangulations. However by changing around 
Cernavskii’s paper and doing some additional work, one can patch up 
Cernavskii’s proof. 

Bryant and Seebeck have also done fairly recently some work on 
taming. In  [Bryant and Seebeck, 11 the following taming theorem is 
proved: Each locally nice embedding f of a k-dimensional polyhedron P 
into Em, n >, 5,  2k + 2 < n, is €-tame. A key part of the proof of this 
taming theorem is contained in an engulfing theorem. That Bryant- 
Seebeck Engulfing Theorem is a very useful result. For instance, it 
was used in [Bryant and Seebeck, 11 to establish the result which is 
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mentioned in Exercise 5.5.2 at the end of this section. A form of the 
engulfing theorem as well as some other machinery, was used [Bryant 
and Seebeck, 31 to establish some codimension three taming theorems. 

Quite recently, two students of Kister at the University of 
Michigan, Miller and Connelly, proved piecewise linear unknotting 
theorems which lead to proofs of taming theorems. Miller's work [2] 
was done first and is concerned with unknotting close PL embeddings of 
PL manifolds. Connelly's work [I]  concerns unknotting close PL 
embeddings of polyhedra. (See the Appendix.) 

A number of long outstanding problems in topological embeddings 
have been answered via some powerful machinery developed recently by 
Kirby, Siebenmann, and Wall. In  particular, some results on taming 
were announced to follow from that machinery in [Kirby and 
Siebenmann, 11. In  addition to giving a taming theorem for codimensions 
greater than two, Kirby and Siebenmann give an obstruction to"strong1y" 
taming in low codimensions. (For related work, see Theorem 6.1 of 
[Rourke and Sanderson, I],) 

Some results on low codimensional taming appear in [Cantrell and 
Rushing, 11. 

The main results of this section are a codimension three taming 
theorem for allowable embeddings of P L  manifolds, Theorem 5.5.1, and 
a codimension three taming theorem for embeddings of certain poly- 
hedra, Theorem 5.5.2, both of which were proved in [Rushing, 41. In  
applying taming theorems, one quite often needs a taming theorem for 
an allowable embedding, rather than for a proper embedding or for an 
embedding into the interior of the ambient manifold. (For instance, 
see [Rushing, 81.) The idea of the proof of Taming Theorem 5.5.1 is 
quite natural. One just takes a handlebody decomposition of the 
embedded manifold and then tames one handle at  a time, each time 
keeping all of the previously tamed handles fixed. The proof is extremely 
geometrical in nature. One can actually see the P L  handle onto which 
the topological handle is to more, form, and then one can see the 
topological handle move onto that PL handle. The taming around the 
boundary of the ambient manifold has already been handled (no pun 
intended) in Section 5.3, and there again one could visualize the 
movement. 

The main results of this section follow. 

Taming Theorem 5.5.1. Let f: Mk -+ Q", n - k 2 3 ,  be an 
allowable embedding of the P L  manifold Mk into the P L  manifold Q" 
such that f 1 f -l( aQ) andf 1 ( M  - f -l( aQ)) are locally $at. Then, f is 
s-tame. 
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Addendum 5.5.1. If f 1 f -l( aQ) is PL, then the taming isotopy is 
$xed on aQ. 

Addendum 5.5.1 can be sharpened as follows. 

Addendum 5.5.2. If the inclusion M' C M - f -l( aQ) is allowable 
where M' is a (compact) PL k-submanifold of M - f -l( aQ) and the inclusion 
M" Cf-'(aQ) is allowable where M is a PL (k - 1)-submantjcold of 

f -*( aQ) and i f f  j M' v M" is PL, then f can be €-tamed by an isotopy e, 
such that 

et l[f(M' U M")] U [aQ - Nf(f(f-'(aQ) - M"), aQ>1 
U [Q - Nf(f(M - M') ,  811 = 1 

for all t. 

If V C P are polyhedra, then the pair ( V ,  P) is said to be admissible 
if P = V (J ((JI=o Mti) ,  where M 3  is a ki-dimensional PL manifold 
such that MF* n (Y u ((J::: M?)) is either empty or a (hi - 1)-dimen- 
sional PL submanifold of ?Mf*  such that V U (u:I: M$) is link- 
collapsible on Mti n (V u ( UiS; M p ) ) ,  i = 0, 1, ..., r .  

Taming Theorem 5.5.2. Let ( V ,  P )  be an admissible pair of 
polyhedra where Cl(P - V )  is k-dimensional and let Qn, n - k 2 3, be a 
PL n-mantjcold. Suppose that f :  P --+ Int Q is an embedding which is locally 
p a t  on the open simplexes of some triangulation of P and is such that f ] V 
is PL. Then, f can be €-tamed by an isotopy e, such that 

et I f(v) U (Q - Nc(Cl(f(P - v))), Q) = 1. 

REMARK 5.5.1. Theorem 55.2 can also be formulated for embeddings which 
hit the boundary of Q. 

Corollary 5.5.1. Let fi: Ik* -+ In, n - ki > 3, i = 1, 2, ..., r 
be proper embeddings such that (a) fi I ark*: Iki 3 aIn is locally flat, 
(b) fi I Int Zki is locally flat and (c) fi(Iki) n f i ( I k j )  = 8 when i # j .  
Then, f :  U;=l Ikf  --+ In ( U:=l Ik* = disjoint union) dejined by f 1 Ikf = fi 
is €-tame. 

REMARK 5.5.2. The next two corollaries illustrate how results in the topo- 
logical category can be obtained from results in the PL category via a taming 
theorem. The first corollary follows from Corollary 5.5.1 and the following 
result which was established in [Lickorish, 11: Piecewise linear spheres ,P and Z* 
contained in S", n - p 2 3, n - q 3 3, are unlinked and only ;I regarding 
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Sn as aP+l, Z p  and 27 bound disjoint PL balls BW-l, B*+l, whose interiors are 
contained in the interior of Bn+l. ( A  collection o f  spheres of Sn is said to be 
unlinked if there is a collection of disjoint n-cells in Sn such that each sphere 
is contained in one of the n-cells and each of the n-cells contains exactly one of 
the spheres.) 

T h e  second corollary below follows from either of the above taming 
theorems combined with the Alexander isotopy (Exercise 4.1 1.2) and 
the following unknotting theorem which was proved in [Zeeman, 61: 
Any proper PL ballpair (Bn, Bk), where n - k > 3, is PL homeomorphic to 
the standard pair (In, Ik). 

Corollary 5.5.2. Spheres Sfi, i = 1, 2, ..., r, contained locally j7atly 
in Sn, n - k, 2 3, are unlinked if and only if regarding Sn as 
SF, i = 1, 2, ..., Y bound disjoint cells D:{+l, i = 1 ,  2, ..., r, respectively, 
whose interiors are contained in the interior of In+l and are locallyj7at there. 

Corollary 5.5.3. Let f :  Ik  --f In, n - k 2 3, be a proper embedding 
such that f 1 aIk: aIk -+ aIn and f 1 Int Ik are localb pat. Then, there is an 
isotopy el: In - In such that e,, = 1 and e l f  = 1. Furthermore, if 

f l  aIk = 1, thenet I aIn = 1. 

Taming Theorem 5.5.3. Let Mk and Qn, n - k 2 3, be PL manifolds 
and suppose that P p  C Mk is apolyhedron. Let f :  M -+ Int Q be an embedding 
such that f I P and f I ( M  - P )  are PL. Then, f can be €-tamed by an 
isotopy which is the identity outside the €-neighborhood o f f  (P) .  

REMARK 5.5.3. Theorem 5.5.3 can be formulated for allowable embeddings. 

Before beginning the proofs of the above three theorems, we will 
formulate a few “statements” and prove a couple of preliminary lemmas. 

Let P be a polyhedron contained in the PL ball H. Then an embedding 
f :  P u Int H --t Int Q of P u Int H into the interior of the PL manifold 
Q is said to be piecewise linear (PL) if for every C-regular neighborhood 
N of aH mod P in H, it is true that f I CI(H - N) is PL is the usual 
sense. 

STATEMENT $(n, k, p) .  Let Dn C En be a locally j u t  n-cell, let Pp C Ik 
be a polyhedron and let f: Ik -+ D be a proper, locally $at embedding such 
that f I P is PL. Then, there is a proper embedding g: P -+ D such that 
(1) g ) P u a I k = f l P u a I k a n d ( 2 )  g I P u I n t I k i s P L .  

REMARK 5.5.4. 7l(n, k ,  p )  is true for n 3 2k + 1 simply by general position. 

STATEMENT q2(n, k ,  m). Let Dn C En be a locally Jut n-cell and let R 
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and R' be regular neighborhoodr of aIm x Ik-m in P such that R' is contained 
in the point-set interior of R. Suppose that f :  Ik -+ D is a proper, locally 
flat embedding such that f [ R is PL. Then, there is a proper embedding 
g : Ik --t D such that 

(a) g [ R' u aIk = f I R' LJ aIk, and 
(b) g I R' LJ In t  Ik is PL. 
REMARK 5.5.5. (a) q2(n, k, m) is true for n 3 2k + 1 by general position. 

(b) q2(n, k, m) follows directly from Theorem 5.4.1 whenever k < in - 1. 
(This fact, let us emphasize, makes the proof of Theorem 5.5.1 complete in 
this book for the metastable range.) (c) For K < in - 1, q2(n, k, m) follows 
from Berkowitz's modification [ 13 of Homma's technique. (Berkowitz's 
modification was mentioned in the last section.) (d) q2(n, k, k) follows from 
Exercise 4.7.1 for n - k For n - k 2 3, $(n, k, m) follows from 
the various codimension three approximation theorems mentioned in the last 
section. Two other methods for obtaining q2(n, k, m) are given in [Rushing, 41. 

STATEMENT w(n, K ) .  Let Mk C En, n - K 2 3, be a (possibly injnite) 
k-dimensional PL man$old. Suppose that f :  En - En is a (topological) 
homeomorphism such that f I Mk is PL. If ~ ( x )  > 0 is a continuous real- 
valued function on En, then there is a PL homeomorphism g: En - En 
which is an E(x)-approximation o f f  such that g I M = f I M. 

REMARK 5.5.6. (a) Theorem 4.11.1 shows that w(n, R), n 3 5,  is true 
whenever M = 8; that is, w(n, -1) is true. It is possible that one could prove 
the w-statement for other cases by appropriately modifying the technique of 
proof of that theorem. (b) It should be pointed out that in [Siebenmann and 
Sondow, 13 it is shown that for n 3 5 there is a PL (n - 2)-sphere K in Sn and 
a (topological) homeomorphism h : S n  --f S n  such that h 1 K is PL and for which 
there is no PL homeomorphism g: Sn + Sn such that g I K = h I K. However, 
K is not locally flat in Sn in these examples. 

3. (e) 

Proposition 5.5.1. 

PROOF. 
w(n, K )  =- v2(n, K ,  m), m = 0, 1 ,  ..., Kfor n - k  # 2. 

Extend f o f  v2 to take In onto Dn. Let h:  In t  Dn --n I n t  I" be 
a PL homeomorphism. Consider In t  In to be En, Then,  hf: En - En 
is a topological homeomorphism which is PL when restricted to the 
infinite PL manifold R n I n t  In. Let ~ ( x )  > 0 be a continuous function 
on En such that E ( X )  3 0 as x -+ co. B y  applying w(n, k), we can get 
a PL homeomorphism g:  En - En which is an  E(x)-approximation of 
hfsuch that g I R n In t  In = hf I R n In t  In. Then,  h-lg: I n t  In - I n t  Dn 
can be extended to take In onto Dn by means o f f  I aIn and this extension 
when restricted to Ik  satisfies the conclusion of q2. 
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STATEMENT T1(n, k ,  p ) .  Let Pp C K k  be polyhedra and let f :  K -+ Int Qn 
be an  embedding of K into the interior of the PL n-manifold Q such that 
f I P and f I K - P are PL. Then, f can be r-tamed by an isotopy which 
is the identity outside the c-neighborhood off ( P ) .  

REMARK 5.5.7. (a) Notice that Theorem 5.5.3 establishes for the case 
n - k 2 3 and K is a PL manifold. (b) is 
proved in [Rushing, 41: Let M k  and p, n - k 3,  be PL manifolds and suppose 
that PF, i = 1, 2, ..., r, are disjoint collapsible polyhedra (for instance balls) 
contained in M such that either P, n aM = 0 or Pi n aM is collapsible. Let 
r > 0 be given. If f: M -+ Int Q is an embedding such that f I Ub, Pi and 
f I M - U:=, Pi are PL, then f is tame, and the taming isotopy is the identity 
outside the r-neighborhood of f  (UT=, Pi). 

The final statement is weaker than @; however, it does not follow 
from Remark 5,5.7(b). 

STATEMENT r2(n, k ,  m). Let M k  be a k-dimensional P L  manifold. 
Suppose M k  = M,k  u Hk where M,k is a k-dimensional P L  manifold 
and ( H k ,  Hk n M,k) (Ik,  aIm x Ik-") for some m such that 0 < m < k .  
Furthermore, suppose that f :  M -+ Int Qn is an embedding such that 
f I(Mk - ( H k  n and f I M,k are PL. Then, f can be €-tamed by an 
isotopy which is the identity outside the €-neighborhood o f f  ( H k  n M,k). 

Let us now consider two lemmas. The proof of the first lemma is 
straightforward and will be left as an exercise (see Theorem 1.6.12). 

The following special case of 

Handlebody Lemma 5.5.1. Let Mk be a k-dimensionalPL manifold, let 
Vk be a k-dimensional PL-submanifold of M such that the inclusion V C M i s  
allowable, and let E > 0 be given. Then, M = V u (uL0 Hi) ,  where 

for some mi < k, j = 0, 1, ..., p .  Furthermore, diam H j  < E for  
j = 0, 1, ..., p .  ( H j  is called a handle of index mi .) 

Question 5.5.1. Does Lemma 5.5.1 hold if we drop the requirement 
that the inclusion V C M be allowable and let V be any codimension 
zero submanifold. 

Lemma 5.5.2. Let P be a polyhedron in the P L  ball H and let C be a 
compact set such that C n H C aH n P and let X = C v H .  Suppose 
that f :  X --f Int Q is an embedding of X into the interior of the PL manifold 
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Q such that f I H is Eocal&flat and f I P U Int H is PL. Then, given E > 0, 
f 1 H can be €-tamed by an isotopy el such that 

et I f(c) u f(p) u (Q - N d f ( H ) , Q ) )  = 1 * 

PROOF. By using Theorem 3.4.1 and Crushing Lemma 5.3.3, we can 
get a locally flat n-cell D C Int Q in a small neighborhood off(H) such 
that (D, D nf(x)) = ( D , f ( H ) )  is a trivial cell pair and D is contained in 
an open n-cell U C Int Q (see Fig. 5.5.1). Let h: H - Ik be a PL homeo- 

Q 
,/-A! . 

Figure 5.5.1 

morphism. Then, we can get a homeomorphismg: ( D , f ( H ) )  - (In, Ik) 
such that gfh-1 = 1. Hence, we have the following commutative diagram, 

Let N be a small C-regular neighborhood of aIn mod h(P) in In. Then, 
by Remark 1.6.5, N is a collar of aIn pinched at h(P) n a P ,  that is, 

N w (aZn x I ) / ( ( y ,  t )  = ( y ,  0) if y E h(P)  n a P ,  0 < t < 1). 

Also C1(In - N) is a PL n-ball and Cl(Ik - (N n Ik) )  is a PL k-ball. 
Thus, fh-'(Cl(lk - (N n P))) = g-l(Cl(Ik - (N n Ik ) ) )  is a PL k-ball. 
Now let N' be a C-regular neighborhood of a(Cl(In - N)) mod h(P). 
Similar remarks hold for N' that held for N. 

The  homeomorphism g: D - In can be extended to take U onto En 
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by using Generalized Schoenflies Theorem 1.8.2. Let N" be a small 
C-regular neighborhood of aIn mod h(P)  n aIk in the PL manifold 
En - Int In. Crushing Lemma 5.3.3 says that there is a small C-regular 
neighborhood N ,  of aIn mod h(P)  n aIk in En - Int In and a small push 
K ,  of (En - Int In, h(P)  n ark) keeping aIn u ( E n  - N") fixed such that 
k,gf(C) n N ,  C h(P) n ark. Then N ,  is a collar of a P  in En - Int In 
which is pinched at h(P) n aIk and In u N ,  is an n-ball. Let Bn be 
In u kT1(N,). Now we can construct a small isotopy 2,: Bn --w Bn such 
that 

(1) a , ~ ( a B n u C l ( I ~ - ( N u N ' ) ) )  = 1, 
(2) Z~(K-'(N,))  = k,'(N,) u N ,  
(3)  e,(N u N')  = N', and 
(4) el I Ik: Ik --t, Cl(P - ( N  n I k ) )  is PL. 

Define e,: g-'(Bn) - g-'(Bn) by e,  = g-'El and extend e ,  to all of Q 
by the identity. This is clearly the desired isotopy and the proof is 
complete. 

Theorem 5.5.4. Theorem 5.5.1 with Addendums 5.5.1 and 5.5.2 
holds i f  v2(n, k, m) and q2(n - 1, k - 1, m - 1) are true for every m such 
that 0 < m < k. 

REMARK 5.5.8. Theorem 5.5.1 with Addendums 5.5.1 and 5.5.2 follows 
from Theorem 5.5.4 and Remark 5.5.5. Remark 5.5.5 suggests several ways of 
establishing q2 in various codimensions. 

Proof of Theorem 5.5.4 Case 1 (Assume that f ( M )  C Int Q and that 
n 2 5 ) .  Apply Lemma 5.5.1, letting M' play the role of V and get the 
type of handlebody decomposition of M assured by that lemma where 
the diameters of the handles are small in comparison with the E of 
Theorem 5,5.1. Suppose that f I M' u (ut; Hi) can be €-tamed by an 
isotopy d ~ '  such that e$-' If(M') u (Q - N,( f (&: Hi), Q)) = 1 for 
all t ,  where j is such that 0 < j < p .  (If j = 0, then we define 
ui=o Hi = 0.) We will now show how to €-tame f I M' u (U:=, Hi) 
keeping f ( M ' )  U (Q - N,( f ( uiL0 Hi),  Q)) fixed (see Figure 5.5.2). 

Let Mj-' denote M' U (uf;; Hd).  Certainly &lf(M,-l) is link- 
collapsible on & y ( H ,  n M j J .  Let T be a triangulation of Qn which 
contains e{-'f(M,-l) and e{-'f(Hj n MjPl) as subcomplexes and let N 
be the simplicia1 neighborhood of d-'f(M,-l - ( H ,  n M,-')) in a 
second derived subdivision of T. Now by applying Crushing Lemma 5.3.3, 
where the compact set C of that lemma is ddy(Hj), we get N ,  
(which is both a C-regular neighborhood and a HZ-regular neigh- 

I-'=-' 
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borhood of e{-lf(Mj-l) mod e:'-lf(H, n Mj-l)) and a small push i!{ 
of (Q, ej-'f(Hi n keeping ei-lf(Mi-l) u Cl(Q - N) fixed such 
that i!lje{-lf(Hj) n N ,  =ei-lf(Hi n Mj-l). 

By the Alexander-Newman Theorem (see Remark 1.8.3), 

Q* = CKQ - N*) 

is a PL manifold and Cljei-'f 1 Hi: Hi -+ Q* is an allowable embedding 
which satisfies the hypotheses of Taming around Boundary Theorem 
5.3.1. Hence by that theorem, we can get a regular neighborhood R of 
Hj n MiPl in Hi and a small push 22 of (Q* , e;je?-'f(H,. n 
which is fixed on aQ* such that e"lji!li~-lf I R: R -+ Q* is PL. Extend 
ti!{ to Q by way of the identity. (Notice that if Hi is a handle of index 0, 
then this paragraph and the preceding one say nothing.) 

By using Theorem 3.4.2 and Crushing Lemma 5.3.3, we can get a 
locally flat n-cell Dn C Int Qn of small diameter such that 

(D", D" n &:e,'ei-lf(M)) = (D", e":e:e;-y(H,)) 

is a trivial cell pair (see Fig. 5.5.2). Of course, D" is contained in an 

Q 

This figure does not i l lustrate the 
need for Lemrno 5 5 2 

Figure 5.5.2 

open n-cell U C Int Q and U inherits a P L  structure from Qn such that 
U m En by Corollary 4.4.1. Now apply q2(n, k, m), where (D", En, P , f ,  R) 
of q2 corresponds to (D", U,  Hj , &2t?ljd-'f I Hi, R). Then we get a 
proper embedding g: Hi + D such that for a regular neighborhood of 
R' of Hj n Mj-l in Hi , contained in the point-set interior of R, 

(1) g J R ' u a H , = f l R ' u a H , , a n d  
(2) g I R' u Int Hi is PL. 
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We would now like to get an isotopy b,j: D --w D such that 

(1) boi = 1, 
(2) E , j  I aD = 1, and 
(3) g 1 1  j2 ja 1 1  jej-1 f l H , = g .  

By going to the standard situation and applying Taming around 
Boundary Theorem 5.3.1, Unknotting Cell Pairs Theorem 4.5.2, and 
the Alexander isotopy (Exercise 4.11.2), we can get such an isotopy. 
Extend &,j to Q by way of the identity. 

I t  now follows that we can €-tame f 1 M’ u (Ui=,, Hi) keeping 
f (M’)  U (Q - N,( f ( UiZ; Hi), Q ) )  fixed by applying Lemma 5.5.2 where 
(R‘, H i ,  Mjw1 , gljt1j&-y, Q )  correspond to (P,  H ,  C ,  f ,  Q )  of that 
lemma. This establishes the inductive step and the proof of Case 1. 

Case 2 (Assume that f ( M )  C Int Q and n = 4). This case follows 
from Corollary 3.6.1. 

Case 3 (Assume that f ( M )  n aQ # 8). First apply Case 1 or 
Case 2 to f If -I( aQ): f -I( aQ) -+ aQ and tame this embedding without 
moving far. Then use a small collar of aQ in Q to extend the taming 
isotopy to Q. Now we are in position to apply Taming around Boundary 
Theorem 5.3.1 to tame on a small regular neighborhood N off -l( aQ) 
in M. Let N‘ denote a smaller regular neighborhood of f - l (  aQ) in M .  
Then, Case 3 follows by applying Case 1 or Case 2 to f I Cl(M - N ’ )  
after throwing CI(N - N’)  in with M‘. This completes the proof of 
Theorem 5.5.1. 

The next theorem follows from Theorem 5.5.4 and Proposition 5.5.1. 

Theorem 5.5.5. Theorem 5.5.1 with Addendums 5.5.1 and 5.5.2 
holds if w(n, k) and w(n - 1, K - 1) are true. 

Theorem 5.5.6. Let f: Mk + Qn, n - k 3 3 be an allowable 
embedding of the P L  manifold Mk into the PL manifold Qn such that 
f If -l( aQ) and f I M - f -l( aQ) are locally $at. Also, let f I P be P L  where 
P is a subpolyhedron of M such that P n ( M  - f -l( aQ)) is compact. 
If T1(n, k, p )  and T1(n - 1, K - 1,p  - 1) are true for eoevy p such that 
0 < p < k, then f can be €-tamed by an isotopy e, such that el I P = f I P. 

Remark 5.5.4 allows us to drop the T~ conditions from the 
hypothesis of Theorem 5.5.6 whenever n 2 2k + 1. 

REMARK 5.5.9. 

Proof of Theorem 5.5.5. (The proof of this theorem is quite 
similar to that of Theorem 5.5.4; however, there is one major difference 
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which occurs at the first of the proof. We will indicate this difference.) 
Again we start by assuming that f ( M )  C Int Q and this time we get a 
handlebody decomposition (H ,  , H I ,  ..., H,) of all of &I, where the 
diameters of the handles are small. Suppose that f I UiI: Hi can be 
tamed by an isotopy ef-l such that e i - ' f I ,P  = 1 for some j such that 
0 < j < p .  Now we want to €-tame f I U i I i  H, and in doing so bring 

f ( P )  back where it.starts. 
Let MiP1 = Ui l i  Hi and let R be a small regular neighborhood of 

H, n MiPl in M j P 1 .  Then H, u R is a P L  k-ball. The  proof now 
proceeds in much the same way as the proof of Theorem 5.5.4 where we 
let the k-ball H, u R play the role of Hi in that proof and 4-y play the 
role of i!j~~,d-'f in that proof. When we come to the appropriate place 
in that proof we would of course apply $(n, k ,  p )  rather than T2(n, k ,  m) ,  
and the P of the 7;lI-statement would be (P n Hi) u R. 

The proof of the following theorem is a simplification of the preceding 
two proofs. 

Theorem 5.5.7. Theorem 5.5.1 holds if 

P ( n ,  k, m) and r2(n - 1, k - 1, m - 1) 
are true. 

Theorem 5.5.8. If 9 ( n ,  k , p )  is true for 0 < p < k ,  then any 
embedding f: Pk -+ Qn, n - k 2 3,  of a polyhedron P into the interior 
of a PL-manifold Q which is locally flat on the open simplexes of some 
triangulation is €-tame. 

Exercise 5.5.1. Use Exercise 5.5.2(a), below, Crushing Lemma 5.3.3, 
Theorem 4.11.1, and the stable Homeomorphism theorem (see Remark 4.11.1) 
to prove Theorem 5.5.8. (Although one should easily be able to do this exercise 
without assitance, we will point out that the key step of the exercise is stated 
as Lemma 1 of [Cantrell and Rushing, I].) 

Proof of Theorem 5.5.2. Express P a s  V u (U&, MF)  in the manner 
assured by the, hypothesis that (V ,  P) is an admissible pair. Let N, 
denote V u ( U:=, Mjki) and inductively suppose that f I NjP1 is PL. By 
Crushing Lemma 5.3.3, there is a regular neighborhood N ,  of 
f (N,-l) mod f (N,-l n Mjkr) and a small push Ct of (Q, f (NjPl n Mjkr). By 
the Alexander-Newman Theorem (see Remark 1.8.3), Q* = Cl(Q - N , )  
is a PL manifold and Elf 1 M?: MF + Q* is an allowable embedding. 
The  inductive step now follows by an application of Theorem 5.5.1 and 
Exercise 5.5.2 below. 
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REMARK 5.5.10. Various refinements of Theorem 5.5.2 can be made by 
applying the refinements of Theorem 5.5.1 given above. 

EXERCISE 5.5.2. A form of the following y-statement was first given in 
[Cantrell and Lacher, 11. 

y(n, m, k ) :  Let Dm be an m-cell in En and let Dk, k < m - 1, be a k-cell in 
Bd Dm such that D - E is locally frat in En and Dk is locally flat in Bd Dm and 
En. Then, Dm is locallyflat in En (henceflat). 

In [Bryant and Seebeck, 11, y(n, m, k) is established for 0 ,< k < m - 3 
and n >, 5. y(n, n, n - 2) and y(n, n - 1, n - 2) are proved for n 2 4 in 
[Cantrell-Price-Rushing, I]. 

This exercise consists of showing the following two facts. 
(a) Use y(n, m, k )  and @(n, m, m - 1) to show: If P p  is a polyhedron, 

p < n - 3, and if q :  P p  -+ En, n 5, is a topological embedding which is locally 
pat on each open simplex of some triangulation T of P, then q is locallyflat on each 
closed simplex of T. 

Use the y and @-statements to show: If q: Mm --f Nn is an embedding of 
a manifold M m  (possibly with boundary) into the topological n-manifold N where 
m < n - 3, n 3 5, and if q is locally flat on the open simplexes of some combina- 
torial triangulation T of M,  then q is a locallyfrat embedding. 

(b) 

(A better result than part (b) is proved in [Cantrell and Lacher, 21.) 

Proof of Theorem 5.5.3. Let E > 0 be given, let T be a triangulation 
of (M, P) of mesh less than E ,  and let V be the simplicia1 neighborhood 
of P in a second derived subdivision. Then, Cl(M - V )  is a PL n-sub- 
manifold of M such that the inclusion CI(M - V) C M is allowable. 
[This follows from the easily proved fact that if Mk is a PL manifold 
and Vk C Mk is a codimension zero PL submanifold, then the 
inclusion Cl(M - V) C M is allowable.] Notice that it follows from 
Exercise 5.5.2 that the embedding f of Theorem 5.5.3 is locally flat. 
Hence, Theorem 5.5.3 follows from Theorem 5.5.1 and Addendum 5.5.2 
by letting Cl(M - V) play the role of M'. 

5.6. LOCAL CONTRACTIBILITY 

OF THE HOMEOMORPHISM GROUP OF A MANIFOLD 

AND CODIMENSION ZERO TAMING 

Let us begin this section by giving some history concerning the type 
of problem which we will be considering. Let .X(Mm) denote the group 
of homeomorphisms of an m-manifold M onto itself. One topology, 
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the compact-open topology (CO-topology) which can be put on &(M) 
was introduced in [Fox, 21. I t  is well known that X ( M )  with the CO- 
topology is a topological group (see Exercise 5.6.2). (We will define a 
couple of other topologies for X ( M )  in this section.) The general type 
question considered here is: What homeomorphisms of a manifold M 
can be connected by a small homotopy in X ( M ) ?  Although questions 
of this type were first treated explicitly and for their own sake about 
twenty years ago, they had been handled implicitly in work done by 
Alexander [4] (see Exercise 4.11.3) and Kneser [l] almost fifty years 
ago. Fort [2] proved that the space X ( P )  of homeomorphisms of the 
plane P onto itself is locally arcwise connected and Floyd and Fort [I] 
proved that the space of homeomorphisms of the 2-sphere onto itself 
is uniformly locally connected. (Roberts [ 13 had previously announced 
a proof that the space of homeomorphisms of the plane onto itself has 
exactly two components.) Hamstrom and Dyer [l] showed that &(&I2) 
is locally contractible for a general compact 2-manifold &I2. In 
[Hamstrom, I], it was shown that the space of homeomorphisms of a 
compact 3-manifold with boundary onto itself is p-LC for all p. (Related 
results had been considered in [Roberts, 21, [Sanderson, 11, [Fisher, I], 
and [Kister, 21.) Kister [l] proved the local contractibility of the group of 
homeomorphisms of En when given the uniform topology. (We will 
define the uniform topology later in this section. This result of Kister’s 
was given as Exercise 4.1 1.4.) 

In 1968, Cernavskii announced remarkable results on the local contrac- 
tibility of the homeomorphism groups of manifolds [ll].  Complete proofs 
of these results appeared in 1969 in [Cernavskii, 121. (A translation into 
English of a manuscript of Cernavskii’s complete work was made by Walker 
at the University of Georgia prior to the appearance of [Cernavskii, 121.) 
In this work Cernavskii considered the group X ( M )  supplied with one of 
the three topologies: the CO, the uniform, or the majorant. The following 
are some of the results of that paper: For any metrizable manifold M ,  
the group &(M) is locally contractible when supplied with the majorant 
topology (Fundamental Theorem). If the manifold M is compact, then 
the group X ( M )  is locally contractible with the CO-topology 
(Theorem 1). If the manifold M is the interior of a compact manifold N ,  
then &(M)  is locally contractible when supplied with the CO-topology 
or the uniform topology if the metric of M is induced by that of N 
(Theorem 2). (It follows immediately from this that %(En) is locally 
contractible.) A relative local contractibility modulo locally flat submani- 
folds theorem followed from that work (Section 5.1). Certain covering 
homotopy theorems also followed in the space of embeddings of mani- 
folds (Section 5.3). The main key to obtaining the above results was 
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Cernavski’i’s Handle Straightening Theorem (Local Theorem 2.16). 
In  1971, another paper on local contractibility by Edwards and 

Kirby appeared [l]. The major contribution of that paper was to give 
two short and elegant proofs of CernavskiTs Handle Straightening 
Theorem mentioned above. (This is Lemma 4.1 of [Edwards and 
Kirby, 13.) Cernavskifs proof of that result is quite laborious to say the 
least, although the basic idea is simple enough. The  basic idea is to use 
Morton Brown’s “technique of meshing a straight structure and a 
wiggly structure” to pull a slighly perturbed handle back. (Brown’s 
technique was employed in Section 3.4 and Section 5.2.) The results 
and proofs (with the exception of the proofs of the handle straightening 
theorem) of Edwards and Kirby are basically the same as those of 
[Cernavskii, 121. 

This section will be devoted to some of the work of Cernavskii and 
Edwards and Kirby mentioned above. Our proof of Cernavskii’s Handle 
Straightening Theorem will be the elegant one of Edwards and Kirby. 
This proof is a generalization of results which first appeared in 
[Kirby, 41. (An oversimplification of the generalization is “to cross the 
proof of [Kirby, 41 with Bk.”) 

Before stating and proving the results of this section, let us give some 
preliminary definitions and discussions. We will always consider our 
manifold M to have a fixed metric p(x ,y ) .  Denote the group X ( M )  
when endowed with the CO, uniform, or majorant topologies by 
Z c ( M ) ,  X u ( M ) ,  or &n(M), respectively, or by Z 7 ( M )  if the topology 
is unspecified. A basis of neighborhoods of the identity e = e (M)  
(the identity mapping) is given in X c ( M )  by the pairs ( K ,  e), where 
> 0 and K is a compact subset of M .  The  neighborhood determined 

by the pair ( K ,  E )  is denoted by N,,,(e) and consists of all homeo- 
morphisms h : M -+ M such that p(x, h(x))  < E for x E K. 

EXERCISE 5.6.1. Show that the above definition of the CO topology is 
equivalent to the usual one. 

A basis of neighborhoods of e in X u ( M )  is given by numbers E > 0. 
The  neighborhood determined by E is denoted by N,(e) and consists 
of all homeomorphisms h such that p(x ,  h(x)) < E for all X E  M. In  
X m ( M )  a basis of neighborhoods of the identity is given by the continuous 
strictly positive functions on M ,  which we shall call majorants. The 
neighborhood determined by the majorant f: M ---* (0, co) is denoted 
by N,(e) and consists of all h such that p(x, h(x)) < f (x) for all x E M. 

EXERCISE 5.6.2. Show that for all three values of T ,  the group H,(M) is a 



5.6. Local Contractibility of Homeomorphism Groups 273 

topological group, and a topological group of transformations of M. T o  do this 
one must verify the continuity of the following three maps: 

(a) XT(M) x XT(M) --t XT(M): (h,  h’) --f hh‘, 

(b) XT(M) + XT(M): h + h-l, and 
(c) S T ( M )  x M + M: (h, x )  + h(x). (See [Arens, I].) 

EXERCISE 5.6.3. Show that for compact manifolds M ,  XT(M) has the same 
topology for T = c, u, or m. [Hint: Even though the topology T = u depends in 
general on the metric in M ,  the exercise can be established by showing that the 
identity mappings 

Xm(M) - %(MI + %(M) 

are continuous and by showing that open sets in X m ( M )  are open in Xc(M) . ]  

In this section, an isotopy of the manifold M means a layer homeo- 
morphism of M x [0, 11 onto itself. Being a layer homeomorphism 
means that the isotopy H :  M x [0, 11 --+ M x [0, 11 determines 
homeomorphisms h,: M-+ M such that H(x ,  t )  = (h,(x) ,  t )  for each 
point (x, t )  E M x [0, 13. W e  shall say that H joins the homeomorphisms 
h, and h, , or  that it takes h, into h, . 

EXERCISE 5.6.4. Our definition of isotopy does not depend on the topology 
in the group of homeomorphisms X ( M ) .  It  might seem that for the study of 
homotopic properties of these groups, for example local contractibility, the 
definition of isotopies as paths in XT(M) would be more natural. It is well 
known that the two definitions are equivalent for T = c. Show that this is not so 
in the other two cases. In fact, for S m ( M ) ,  show that a path can only join 
homeomorphisms which coincide outside some compact set, which implies that, 
in general, X m ( M )  is not even locally arcwise connected when M is noncompact. 

We consider the set of all isotopies, 9 ( M ) ,  of M as a subgroup of 
the group X ( M  x [O, l]), and we topologize it as a subspace of 
XT(M x [0, 11). T h e  group 9 ( M )  with this topology is denoted by 
YT(M). ( T h e  direct product metric is taken in M x [0, 11.) W e  denote 
the unit of the group 3 T ( M )  (the identity isotopy) by E, or if necessary, 
by E(M)*  

EXERCISE 5.6.5. Show that for any neighborhood N(e) in the group XT(M), 
there is a neighborhood N ( E )  in the group YT(M) such that for h E N(E)  all the 
homeomorphisms h, lie in N(e).  

We are now ready to give definitions concerning homotopies in 
S , (M) .  Let A, B, and C be subsets of XT(M) such that A U C C B. 
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Then,  A deforms on B into C if there is a continuous mapping 
r: A --+ YT(M)  such that for h E A we have 

(4 (W)), = h, 

(c) (Wh E c. 
(b) (I'(h)), E B for t E [0, 11, and 

Now let us introduce the main concept of this section. T h e  group 
ST(M) is called locally contractible if there is a neighborhood of e 
in  ST(M) which deforms on S 7 ( M )  into e. 

REMARK 5.6.1. In the above definition of local contractibility we may 
always assume that r ( e )  = E since any contraction F(h) can be replaced by the 
contraction r ' (h )  = (F(e))-l I'(h), having this property. Furthermore, an 
arbitrary neighborhood N(e) may be taken as B, provided that a sufficiently 
small neighborhood N'(e) ,  of e is taken as A. For, by Exercise 5.6.5 there is a 
neighborhood N(E)  C 9,(M) such that for each isotopy @ E N(E)  all the homeo- 
morphisms Qjt lie in N(e). Since r is continuous, there is a neighborhood N'(e )  
such that r(N'(e)) C N(E). Thus, if &,(M) is locally contractible in the sense 
of the above definition, then for a given neighborhood N(e) there is a neighbor- 
hood N'(e)  which deforms into e in N(e). This agrees with the usual definition 
of locally contractible as given in Section 5.4. 

EXERCISE 5.6.6. In Exercise 5.6.4, you showed that a path in X m ( M )  can 
only join homeomorphisms which coincide outside some compact set. This 
indicated that if we are to prove the local contractibility of Xm(M) ,  we need to be 
somewhat careful about our definitions. It is quite easy to visualize "nice" 
homeomorphisms of En, for example, which are not the identity outside any 
compact set and which one feels he can pull back to the identity. In that spirit, 
given an arbitrary neighborhood B of e in Xm(En) ,  define a homeomorphism 
A E &m(En) which is not the identity outside any compact set such that A 
deforms on B to e. [This should help to convince one that our definition of 
locally contractible is quite natural for #m(M).] 

Example 5.6.1. I n  order to motivate consideration of the majorant 
topology, it might be well at this point to  consider the following 
instructive example. Remove a countable number of pairs of open disks 
from the open unit disk and then obtain N by attaching a countable 
number of handles whose diameters tend to zero as indicated in  
Fig. 5.6.1. Now, it is intuitively clear (and quite easy to prove) that there 
are homeomorphisms in arbitrarily small neighborhoods of e which can 
not be deformed to e in the uniform topology much less the CO topology, 
that is, twist some of the small handles out toward infinity. Thus,  it 
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Figure 5.6.1 

follows that neither Xc(N)  or Xu(N)  is locally contractible. [We will 
prove later (Theorem 5.6.3) that for any manifold M which can be 
realized as the interior of a compact manifold both #u(M) and S 0 ( M )  
are locally contractible, but this is not true of N.] However, if one defines 
e: N -+ (0, co) small enough, then any homeomorphism of N within 
of the identity cannot twist the handles and so one should be able to 
pull such homeomorphisms back to the identity. Indeed, we will prove 
that S m ( M )  is locally contractible for any manifold M (Theorem 5.6.4). 

If U is a subset of a manifold M ,  a proper embedding of U into M 
is an embedding h: U -+ M such that h-l( aM) = U n aM. An isotopy 
of U into M is a layer homeomorphism H :  U x [0, I] + M x [0, I]. 
As in the case U = M defined previously, each isotopy H :  U x [0, 11 * 
M x [0, 11 determines embeddings h,: U -+ M such that H ( x ,  t )  = 
(h,(x),  t )  for each point (x, t )  E U x [0, 13. An isotopy H is proper if 
each such embedding h, for the isotopy is proper. 

If C and U are subsets of M with C C U ,  let E( U ,  C ;  M )  denote the 
set of proper embeddings of U into M which are the identity on C,  and 
let E( U ,  M )  denote E( U ,  6;  M ) .  Let E( U ,  C ;  M )  be provided with the 
CO topology. Thus, a typical basic neighborhood of h E E( U ,  C ;  M )  is of 
the form N,,,(h) = {g E E(U, C ;  M )  1 p(g(x ) ,  h(x))  < E for all x E K) ,  
where K is a compact subset of U ,  E > 0 and p is the metric on M. 

If P and B are subsets of E( U ;  M ) ,  then a deformation of P into B 
is a map @: P x I + E(U;  M )  x I such that O0 1 P = 1, and 
Gl(P)  C B.  (This is compatible with our previous definition of defor- 
mation since we are dealing with the CO topology here.) We may 
equivalently regard @ as a map @: P x I x U --f M such that for 
each h E P and t E I, the map @(h, t,  U ) :  U ---t M is a proper embedding. 
Thus, a deformation of P is simply a collection {ht:  U + M ,  t E I I h E P }  
of proper isotopies of U into M ,  continuously indexed by P, such that 
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h, = h. If W is a subset of U,  a deformation @: P x I --f E( U ;  M )  x I 
is modulo W if @,(h) I W = h I W for all h E P and t E I. 

Suppose tha t0 :P  x I + E ( U , M )  x I a n d + : Q  x I - + E ( U , M ) x I  
are deformations of subsets of E( U, M ) ,  and suppose that Ql(P)  CQ. Then, 
the composition of + with @ denoted by i,h * @: P x I + E( U ,  M )  x I 
is defined by 

We shall denote the cube {x E En I I xi I < Y, 1 < i < n} by ITn. 
We regard S1 as the space obtained by identifying the endpoints of 
[-4, 41 and we let p: El -+ S1 denote the natural covering projection, 
that is, p ( x )  = (x + 4)tmod8) - 4. Let T n  be the n-fold product of S1. 
Then, ITn can be regarded as a subset of Tn for r < 4. Let pn: En + Tn 
be the product covering projection and let pkvn: Ilk x En --+Ilk x T” 
be the map 1,; x pn.  These maps will each be denoted b y p  when there 
is no possibility of confusion. 

Let Bn be the unit n-ball in En and let Sn-l be its boundary as usual. 
We regard Sn-l x [- 1, I]  as a subset of En by identifying (x, t) with 

With the above discussions, definitions and notation out of the way, 
we are ready to start formulating some lemmas preliminary to the proofs 
of the main results of this section. 

A discussion of, and a geometrical proof of, our first lemma will be 
postponed until the end of this section. (An immersion of one space 
into another is a continuous map which is locally an embedding.) 

(1 + t/2) ’ x. 

Immersion Lemma 5.6.1. 
of the punctured torus into En. 

There is an immersion a: Tn - Bn + En 

For a picture of OL in the case n = 2, see Fig. 5.6.2. 

a 

a (T2- 821’ 

Figure 5.6.2 
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The  next lemma can be proved by redoing the proof of Generalized 
Schoenflies Theorem 1.8.2 in a canonical way. We leave this as an 
exercise. Work related to this lemma can be found in Theorem 1.2 of 
[Huebsch and Morse, 11, [Gauld, I], Theorem 1 of [Kister, 31, [Wright, 21, 
and [Smith, 13. 

Weak Canonical Schoenflies Lemma 5.6.2. There exists an E > 0 
such that for any embedding f :  Sn-l x [-1, I]  -+ En within E of the 
identity, f I Sn-l extends canonically to an embedding j ;  Bn -+ En. The 
embedding J? is canonical in the sense that j depends continuously on f and 
i f f  = 1, t hen j  = 1. 

Recall that we first defined collars in Section 1.7. If M is a 
manifold, then a collar for aM may be regarded as an embedding 
u: aM x [0, 13 -+ M such that ~ ( x ,  0) = x for all x E aM. The  existence 
of such collars was proved in Section 1.7. The  following lemma is proved 
by an elementary application of one of the techniques of that section. 
Throughout this section we will adopt the custom of identifying a 
collar with its image. 

Lemma 5.6.3. Let M be a manifold with a collar aM x [0, i] and 
let C,  and V ,  be compact subsets of aM such that C, C Int,, V,  . Let U 
be a subset of M such that V ,  x [0, 11 C Int U (see Fig. 5.6.3). Then, 
there is a ne%hborhood P of the inclusion 7: U C M in E( U, V, ; M )  and a 
deformation 

@: P x Z-+ E(U,  V o ;  M )  x Z 

Figure 5.6.3 
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of P into E( U ,  V ,  v (C, x [0, 91); M )  such that @ is modulo the complement 
of an arbitrarily small neighborhood of V, x [0, 11. 

Let W be an arbitrary neighborhood of V,  x [0, 11 in U and 
choose P so that h E P implies that V,  x [0, 11 C h( W).  Let A: V, +",1] 
be a map such that X(C,) = 1 and h(FraM V,) = 0. For each t E [0, 13 
let 

PROOF. 

w, = {(x, s) E vo x [O, 111 0 < s < th(x)} 

and define a homeomorphism y,: ( W, - Int Wtlz) -+ W, by linearly 
stretching the fibers over the boundary points, that is y,(x,  s)  = 
(x, 2(s - th(x)/2)) for each (x, s) E W, - Int Wflz . Extend y ,  via the 
identity to a homeomorphism r,: Cl(M - W,,,,) -+ M .  For each h E P, 
define an isotopy h,: U -+ M ,  t E [0, I), by 

.rr;'hn, on U - W t I 2 ,  
on wt,, * hi= I I  

Then, h, = h, h, 1 V,  u ( C ,  x [0, *I) = 1 and h,  1 U - W = h 1 U - W 
for each t .  Thus, @: P x I -+ E(U, V, ; M )  x I defined by 
@(h, t )  = (h ,  , t )  is the desired deformation. 

The  next lemma was first proved as Local Theorem 2.16 of 
[Cernavskii, 121. As mentioned earlier, it was nicely reproved as 
Lemma 4.1 of [Edwards and Kirby, 13, and the proof which we shall 
present is due to Edwards and Kirby. 

Handle Straightening Lemma 5.6.4. There is a neighborhood Q of 
theinclusionq: I lk  x I,. C Ilk x Enin E(Ilk x Ian, a l lk  x 14n; I lk  x En) 
and a deformation # of Q into 

E(Ilk x 14", (aIlk x 14n) u (Ilk x Iln); I lk  x En) 

modulo a( l lk  x 

Let C = (Ilk - Int I,",,,) x Isn (see Fig. 5.6.4). It is con- 
venient to work with embeddings which are the identity on C. This can 
be arranged by applying Lemma 5.6.3 which says that there exists a 
deformation 

4,: Qo x I ---f E(Ilk x 14", allk x Ian; Ilk x En) x I 

such that #(q, t )  = (7, t )  for  all t .  

PROOF. 

of &, into E(Ilk x ( aIlk x 14n) u C; Ilk x En) such that #, is 
modulo a(Ilk x 

The main construction of the lemma is as follows. Given an embedding 
h E E(Ilk x 14n, ( aIlk x 14n) u C; Ilk x En) which is sufficiently close 

Note that #,(r], t )  = (q, t )  for all t .  
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i 

i 

r 
1,: E" 

Figure 5.6.4 

to the inclusion 7,  we construct a homeomorphism g: Ilk x En --t 
Ilk x En, continuously dependent upon h, such that 

g I(aIlk x En) u ( I l k  x (En - Int 13") = 1 

and g I Ilk x Iln = h I Ilk x Iln. The deformation of the lemma is 
then defined by composing an "Alexander isotopy" of g with h. The 
homeomorphism g is produced by successively lifting maps as indicated 
in Diagram 5.6.1 and Fig. 5.6.5. 

I l k  x En E=h, 
r l k  x E* - 
Ilk x En - Y - q  1.-1 

1. 4 
Ilk x En h6 

Zlk x T n  h3 

v U 

- Zlk x Tn 

(Zp x T") - (B3k x B3n) ha' ). (Z,k x T") - (Bk x Bn) 
n n 

(Ilk x Tn) - (B2k x B2n) (Ilk x Tn) - (Bk x Bn) 
v U 

hl - ) Zlk x (Tn - B,") Ilk x (T" - B" 

h 
Ilk x Ian - Zlk x En 

Diagram 5.6.1 
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Figure 5.6.5 

The  neighborhood Q1 of T which appears in the proof will always be 
understood to be a neighborhood of the inclusion map 7 in the space 

Let Bn, B,", Ban, and Bgn be four concentric n-cells in Tn - IZn such 
that Ejn C Int BY+, for each j. Likewise let Bk, BZk, Bsk, and Bgk be four 
concentric R-cells in Int Ilk such that Ilk C Bk and Bik C Int Bik,, for 
each j .  By Immersion Lemma 5.6.1, there exists an immersion 
a0: Tn - Bn -+ Int Ian. By Generalized Schoenflies Theorem 1.8.2, we 
can assume that a0 I I," is the identity. Let [Y denote the product 
immersion 

1 x a,,: Ilk x (Tn - B") ---f Ilk x Int Ian. 

then h can be covered in a natural way by an embedding 

E(Ilk x 14%, (arp x 14n) u c; I l k  x En). 

If h E E(Ilk x Ign, ( aIlk x 14n) u C; Ilk x En) is close enough to T ,  

h1: Ilk x (T" - BZ") -+Ilk x (T" - B" 1 
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(see Diagram 5.6.1 and Fig. 5.6.5). This is done by defining h, to 
agree locally with a-,ha. Thus, let {U,]:,, be a finite cover of 
I l k  x ( T n  - Int BZn) by open subsets of Ilk x ( T n  - Bn) such that 
for any two members Ui, Uir which have a nonempty intersection, 

1 ( Ui u U,.) is an embedding. Let { Wi}:=, be a cover of I lk  x (Tn -B,n) 
by compact subsets of Ilk x ( Tn - Bn) such that Wi C Ui for each i. 
If E is chosen small enough and if Q1 = Nm(u;=lw,),c(q), then h EQ, 
implies that ha(Wi) C a(Ui) for each i. For such h we can define the 
lifted map h,: Ilk x ( T n  - B,") + Ilk x ( T n  - B,") by letting 
h, I W, = ( a  1 UJ-l ha I W, for each i. Then h, is an embedding which 
lifts h and depends continuously on h, and is such that if h is the inclusion 
then so is h,. Furthermore, h, I (I lk  - Bk) x ( T n  - B,") = 1. 

From this latter property, it follows that h, can be extended via the 
the identity to an embedding 

h,: ( I lk  x T") - ( B , k  x B,") + (Z1k x T")  - (Bk x B"). 

Let B" = Bk x Bn. We can now apply Weak Canonical Schoenflies 
Lemma 5.6.2 to extend h, 1 (Ilk X Tn) - B,m to a homeomorphism of 
Ilk x Tn. For if Q1 is sufficiently small then h EQ, implies that 
h, I (BG, - BY,,) is close to the identity and therefore h, I aB2n: aB,m + 

Int  B,m extends to an embedding h,: B,m -+ Int B,m. Define a homeo- 
morphism h,: Ilk x Tn + I l k  x Tn by letting 

h, / ( I l k  x 7'") - Bsm = h, ](Ilk x T")  - and h, 1 B,"l = h, . 
By the construction, h, depends continuously on h and if h is the 
inclusion, then h, is the identity. 

Now if h, is sufficiently close to the identity, then h, lifts in a natural 
way to a bounded homeomorphism h,: Ilk x En + I l k  x En (where 
bounded means the set {I1 h4(x) - x / I  1 x E Ilk x En} is bounded). We 
can define h, so that it agrees locally with p-'h,p, similar to the way that 
h, was defined. For if U is any subset of Ilk x En of diameter < 4, then 
p 1 U is an embedding. For each x E Ilk x En, let h, I U,(x) = 

( p  1 U,(x))-lh,p I Ul(x), where us(x) denotes the open &neighborhood 
of x. Then h, depends continuously on h, , h, I a l l k  x En = I ,  and 
h, = 1 if h, = 1. 

4 Em be a homeomorphism which is a radial expansion 
and which is the identity on IZm = Izk x IZn. Extend h, via the identity 
to a homeomorphism h,': Ek x En + Ek x En and define a homeo- 
morphism h,: I lk  x En -+I lk  x En by 

Let y :  Int  

h, = /:-'h,'y on Ilk x IntZ,", 
on I lk  x (En - IntI,"). 
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The continuity of h, follows from the fact that h,' is bounded. Now h, 
has the following properties: 

( 1 )  h, I ( allk x En) u (I lk  x ( E n  - Int Isn)) = 1, 
(2) a&h,(X) = ha&v(~) for x E (Ilk X n h$(Ilk X IZn),  

( 3 )  h, depends continuously on h, and if h = r ] ,  then h, = 1. 
Property 3 implies that if Q1 is small enough, then h5(1Ik x I,%) C Ilk X I," 
whenever h E Q1 . Thus, since apy I Ilk x 1," = 1, Property 2 implies 
that h,  1 Ilk x Zln = h I Ilk x Ilm. Therefore, h, is the desired map g 
mentioned at the beginning of the proof. 

T o  complete the proof. We show how to useg = h, to deform h to be 
the identity on Ilk x Iln. Extend g via the identity to a homeomorphism 
g: Ek ,X E" -+ Ek x En and define an isotopygl: Ilk x En -+ Ilk x En, 
t E [0, 11, by using the Alexander trick on g. That is, 

Define a deformation 

#1: Q~ x I + E(Ilk x ~ ~ n ;  a I l k  x ~ ~ n ;  ~~k x E") x I 

by (&){(h) = gylh: Ilk x 1," -+ Ilk x En. Then, deforms Q1 into 

E(Ilk x 14n, (al lk  x 14n) u (I lk  x Iln); Ilk x En). 

If Q1 is small enough so that h implies that 

h ( Q  x aI4.) n (Ilk x Isn) = 8, 

then $1 is modulo a(Ilk x 14n). Note that $l(r], t )  = (q, t )  for all t .  
Finally, let Q be a neighborhood of r ]  in E(Ilk x 14n, alln x 14n; Ilk x En), 
Q C Q o ,  such that t,h0(Q x l ) C Q ,  x 1, and let $ = $1 c + ~  IQ x 1. 
Then, $ is the desired deformation of the lemma. 

Although we will prove a stronger result later (Theorem 5,6.3), let us 
use Handle Straightening Lemma 5.6.4 for the special case of zero 
handles to prove the following result. (A similar proof of this result 
appears in [Kirby, 41.) 

Theorem 5.6.1. 

PROOF. 

X o ( E n )  is locally contractible. 

Notice that for zero handles, Handle Straightening Lemma 
5.6.4 says the following: There is a neighborhood Q of the inclusion 
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q: 14n C En in E(14n; En) and a deformation $ of Q into E(I,", Iln; En) 
modulo a14" such that $(q, t )  = (q, t )  for all t .  Let Q* be a neighborhood 
of e E &,(En) such that h E Q* 3 h I 14n C Q. If h E Q*, define an isotopy 
h,: En + En, t E [0, 11, by 

on En - Idn, 
on ~ ~ n .  = I h  +,(h I ~ ~ n )  

Then, h, = h and h, E E(En, Iln; En). Let $': Q* x I ---f &,(En) x I 
be defined by $'(h, t )  = (h ,  , t ) .  Then, $' is a deformation of Q* into 
E(En, Iln; En). Now let us define a deformation $" of E(En, Iln; En) to e 
(the identity on En). If h E E ( E n ,  Iln; En) define h,:  En+ En, t E [0, I] 
by 

-h(tx) if t > 0, i: if t = 0. 
h,(x) = t 

Define #": E(En, Iln; En) x I -+ E(En, Iln; En) x I by $"(h, t )  = ( h ,  , t).  
Finally, we see that $" * $': Q* x I + &"(En) x I is the desired 
deformation of Q* to e. 

EXERCISE 5.6.7. If M is a compact, PL manifold, then use Handlebody 
Decomposition Theorem 1.6.12 and Handle Straightening Lemma 5.6.4 to 
show that .?QM) is locally contractible. (In the pages that follow, we will see 
that this result is more involved for arbitrary topological manifolds M. The 
technique of proof of this exercise is developed as a step in the proof of the more 
general result, and so one may want to sneak a glimpse at the following pages 
before doing this exercise.) 

All of the main results of this section will follow rather quickly from 
the next lemma. T h e  proof of this lemma uses Handle Straightening 
Lemma 5.6.4 in a fundamental way. This  lemma is essentially Propo- 
sition (B) of [Cernavskii, 121 and is a statement on p. 71 of [Edwards 
and Kirby, I]. 

Lemma 5.6.5. Given subsets C, D,  U and V of M such that C is 
compact, D is closed, U is a neighborhood of C and V is a neighborhood of 
D, then there is a neighborhood P,, of q in E( U ,  U n V ;  M )  and a 
deformation 

v: P,, x I -*E(U,  U n  D ; M )  x I 

of P,, into E( U ,  U n (C v D ) ;  M )  such that 9) is modulo the complement 
of a compact neighborhood of C in U and ~ ( q ,  t )  = (7, t )  for all t .  
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Henceforth, it will be understood that all deformations of subsets 
of E ( U ,  M )  fix the inclusion and are modulo the complement of a 
compact neighborhood of C in U. 

The proof of the lemma is divided into two cases. 
Case 1 (Cl(C - D) n aM = 8). Let {( W, , hi)}{=, be a finite cover 

of CI(C - D) by coordinate neighborhoods which lie in U ,  where 
h,: Wi -+ Rm is a homeomorphism. Express Cl(C - D) as the union of Y 

compact subsets C, , ..., C, such that C, C W, , and let D, = D U~<,C~ 
for 0 < i < Y. The  proof of Case 1 is by an inductive argument on i. 
At the ith step we assume that there exists a neighborhood Pi of q: U C M 
in E( U ,  U n V ;  M )  and a deformation 9,: Pi x I ---+ E( U ,  U n D ;  M )  x I 
of Pi into E ( U ,  U n V, ; M ) ,  where V,  is some neighborhood of 
D, . The induction starts trivially at i = 0 by taking V ,  = V ,  
Po = E(U,  U n V ;  M )  and vo to be the identity deformation. We 
show how in general the inductive assumption can be extended to hold 
true for i + 1 .  

Identify W,+l with Em in order to simplify the notation. Then, 
C,+, is a compact subset of Em and V, n Em is a neighborhood in Em 
of the closed subset Di n Em. By the technique of proof of Handlebody 
Decomposition Theorem 1.6.12, there exists a pair of polyhedra (L,  K ) ,  
with L C K ,  such that ( K ,  L)  has a handlebody decomposition with the 
following properties (see Fig. 5.6.6): 

Figure 5.6.6 

(1) Di n Ci+l C L C Int( V,  n Em), 

(3) Cl(K - L)  n Di = 8, and 
(4) if H is a handle of K - L and if k is the index of H ,  then there is 

an embedding p: Ilk x En -+ Em, m = k + n, such that p(Ilk x I ln )  = H 
and p(Ilk x En) n (Di u L u C1(@ - A)) = p(aIlk x In) ,  where K k  

(2) G+l C K  



5.6. Local Contractibility of Homeomorphism Groups 285 

denotes the union of all handles of K of index < k. (The embedding p 
can be obtained by using a collar of aH in Em - Int H.) 

Assume that H ,  , ..., H i ,  ..., H ,  are the handles of K - L subscripted 
in order of nondecreasing index. We proceed by induction on j to alter 
the embeddings in E( U ,  U n Vi ; M )  a step at a time in neighborhoods 
of the Hi. For each j ,  0 < j < s, let Di‘ = Di u L ul+H1 and 
assume inductively that for some neighborhood Pi‘ of q: U -+ M in 
E(U,  U n V ;  M )  there exists a deformation yi’: Pi’ x I + 

E(U,  U n D; M )  x I of Pi‘ into E(U,  U n Vj’; M )  where Vi’ is some 
neighborhood of Di’ in M .  (If j = 0, the main inductive assumption 
gives precisely the information that is needed.) Consider Hi+l and the 
embedding p: Ilk x En -+ Em given by Property 4 above. By repara- 
metrizing the En coordinate if necessary, keeping Iln fixed, we can 
further assume that p( a l l k  x 14n) C Int Vj’. 

According to Handle Straightening Lemma 5.6.4 (replacing Ilk x I,” 
by I l k  x 12n) there is a neighborhood Q of the inclusion r), in 
E(Ilk x 14n, a l l k  x 14n; Ilk x En) and a deformation c,h of Q into 
E(Ilk x 14n, ( a l lk  x 14”) u (I lk  x 12n); I lk  x En) modulo a(Ilk x 14n) 
such that c,ho(qo, t )  = (q,, t )  for all t .  Let Q’ be a neighborhood of r)  in 
E( U ,  U n Vi’; M )  such that h E Q‘ implies that hp( l lk  x 14n) C p(I lk  x En) 
and p-lhp 1 I lk  x I,. E Q. Then, z+b can be used to define a deformation 
$’:Q’ x I +  E(U,  U n  Di’; M )  x I of Q’ into E(U,  U n Vj+, ; M )  as 
follows, where V,+, is a neighborhood of D;+, to be defined. If h EQ‘, 
define an isotopy h,: U -+ M ,  t E [0, 11, by 

Then h, = h and h, E E( U ,  U n Vi+l ; M ) ,  where 

V;+l = (Vj’ u p(Ilk x Ian))  - p(Ilk x (14n - Int 12n) ) .  

Let $’(h, t )  = ( h ,  , 1) .  By the continuity of yi’ there is a neighborhood Pi+l 
of r )  in E( U ,  U n V ;  M ) ,  Pi+l C Pi‘, such that yi’(P;+, x 1) CQ‘ x 1. 
Let 

v;+, = 4’ * (vj‘l P;+l x I ) :  P:+l x I + E(U, U n D; M )  x I. 

Then cpi+l is the desired deformation, that is, c&+~ deforms Pi+, into 
E(U, U n Vi+, ; M ) .  

At the completion of the subinductive argument on j ,  the main 
inductive argument can be continued by taking Pi+, = P,’, Vi+, = V8‘, 
and Qi+, = gS’. This completes the proof of Case 1. 
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Case 2 (Cl(C - D) n aM # 8). The idea of the proof of Case 2 
is to use a boundary collar for M and Case 1 of the proof to initially 
deform the embeddings to the identity on a neighborhood of 
c l (C - D) n aM. The deformation can then be completed by applying 
Case 1. 

Let i3M x [0, I] be a boundary collar for M. Without loss of generality 
we can assume that C = Cl(C - D) and that D is compact (since we 
can assume that U is compact and that D C U). Let C, , D o ,  U, , and 
Vo be subsets of aM and let E > 0 be such that C, is compact, Do is 
closed, U, is a compact neighborhood of C, , and V,  is a neighborhood 
of Do and 

(a) C n (aM x [0, 5 ~ 1 )  C IntaM C,, x [0, 5 ~ 1 ,  
(b) U, x [0, 5 ~ 1  C Int U, 
(c) D n (aM x [0, 5 ~ 1 )  CIntaM Do x [0, 51, and 
(d) V,  x [0, 5 ~ 1  C V.  

Let Cl be a compact neighborhood of Co in 8M such that C,  C IntaM U, . 
The deformation q produced for this case is the composition of three 

deformations q l, v a ,  and y 3 .  The first deformation ql: Pl x I + 
E(U, U n D ;  M) x I deforms a neighborhood PI of q: U C M in 
E( U, U n V ;  M) into E( U, U n (C, u Vl); M) modulo U - U, x [0,5c] 
(see Fig. 5.6.7), where 

Vl = (V - (aM x [0, 5~1) )  U (Do x [0, 5 ~ ] ) ,  

i \ I- I -- 1 
1: 

" O  

Figure 5.6.7 
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which is a neighborhood of D. The second deformation q,, which is 
defined using Lemma 5.6.3, deforms a neighborhood P, of 7 in 
E(U, U n  (C, u Vl) ;  M )  into 

E(U, U n ((C, x [0, 2 ~ 1 )  u V,); M )  modulo U - U, x [0, 561. 

At this stage the problem can be redefined so that Case 1 of the proof 
applies, which leads to the definition of v 3 .  

DEFINITION OF vl. It follows from Case 1 that there is a neighborhood 
Po of the inclusion 7,: U, C aM in E(U, , U, n V, ; aM) and a 
deformation vo: Po x I + E( U, , U, n Do ; aM) x I of Po into 
E( U, , U, n (C1 u Do); aM) modulo FraM U, , Let P, be a neighborhood 
of 7: U C M in E(U,  U n V ;  M )  such that h E P, implies that 
h 1 U, E P o .  Given h E Pl , use the deformation yo to define a level 
preserving homeomorphism u: U, x [0, 5 ~ 1  -+ U, x [0, 561 be letting 

0 I uo x t = (h  I UO)-l((~o)(5r--t),6r(h I UO)). 
Then (I is the identity on (FraM U, x [0, 5~1) u (U,  x SE) and 
u I C, x 0 = ( h  I U0)-l 1 C, . Extend u to all of M via the identity. 
Then (I: M -+ M is isotopic to 1 modulo M - ( U ,  x [0, 5~1) by the 
isotopy (I,: M -+ M ,  t E [0, 13, where ut is defined by 

1 on M - (aM x [0, t ] ) ,  

6;'a8, on aM x [0, t ] ,  

where 6,: aM x [0, t] 3 aM x [ l  - t ,  I] is the homeomorphism 
which send (x, s) to (x, s + 1 - t ) ,  Let v,(h, t )  = (hut , t ) .  

a t =  [ 

DEFINITION OF v2. It follows from Lemma 5.6.3 that there exists a 
neighborhood Pz of 7 in E( U ,  U n (C,  u Vl); M )  and a deformation 
q~,: P, X I +  E(U,  U n  V1 ; M )  x I of P, into 

E(U, U n ((C, x [0, 2 ~ 1 )  u V,); M )  modulo U - (U,  x [0, 561). 

One may take the Yo x [0, I] of the lemma to be C, x [0,4~] and may 
choose U,  x [0, 5 ~ 1  to be the arbitrarily small neighborhood of 
V, x [0, I]. I t  follows from the proof of the lemma that an embedding 
which is the identity on U n V ,  remains so during the deformation. 

DEFINITION OF v3.  Let C, = C - (aM x [0, €3) and let D, = 

D u ( C n ( 8 M  x [ O , E ] ) ) .  T h e n C , n D , = C u D a n d C , n a M = 8 .  
Let V ,  = (C, x [0, €1) u V , ,  which is a neighborhood of D,. By 
Case 1, there is a neighborhood P3 of 7: U C M in E( U ,  U n V,  ; M )  
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and a deformation v,: P, x I -+ E(U,  U n D, ; M )  x I of P, into 
E( U ,  U n (C, U D,); M ) .  This defines 97, . 

To conclude Case 2, let P, C Pl be a neighborhood of 71: U C M 
in E(U,  U n V ;  M )  such that vl(P,, x 1) C Pz x 1 and 
9),(q1~(P~ x 1) x 1) C P, x 1 and define 

p = pa * p2 * (pl I P,, x 1): P,, x I +  E ( U ,  U n D; M )  x I .  

Then y is the desired deformation. 

of [Edwards and Kirby, 11. 
The  next theorem is Theorem 1 of [CernavskiI, 121 and Corollary 1.1 

Theorem 5.6.2. If the manifold M is compact, then Sc ( M )  is locally 

PROOF. Apply Lemma 5.6.5 where D = V = 0 and where 
U = M. In  this case Lemma 5.6.5 reduces to Theorem 5.6.2, 
since S ( M )  = E(M; M )  and (1,) = E(M,  M ;  M) .  

The  following theorem is Theorem 2 of [Cernavskil, 121 and is 
Corollary 6.1 of [Edwards and Kirby, 11. 

contractible. 

Theorem 5.6.3. If the manifold M is the interior of a compact manifold 
N ,  then S c ( M )  is locally contractible. 

Let aQ x (0, I ]  be an open collar for M induced by a collar 
for aQ in Q. Let K = M - (aQ x (0, l]), which is compact. By 
Lemma 5.6.5, there is a neighborhood P of the identity in X c ( M )  and 
a deformation of P into d ( K ) ,  where d ( K )  denotes the subgroup of 
homeomorphisms that are fixed on K C M .  There is a natural 
deformation of d ( K )  into { 1 by making use of the open collar. By com- 
posing these deformations, it follows that P deforms into {IM) and 
therefore Z c ( M )  is locally contractible. 

EXERCISE 5.6.8. Write down the nature1 deformations of P into d ( K )  men- 
tioned above. (This easy deformation is given in 1.20 of Cernavskii [12].) 

Our final theorem is the Fundamental Theorem of [Cernavskii, 121 
and was proved as Corollary 6.2 of [Edwards and Kirby, 11. 

PROOF. 

Theorem 5.6.4. For any manifold M ,  X m ( M )  is locally contractible. 

PROOF. Assume without loss of generality that M is connected. 
Let { Ui , Ci}& be a collection of pairs of compact subsets of M such that 
for each i, U, is a neighborhood of C, (see Fig. 5,6.8), M = U:=l Int C,  
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Figure 5.6.8 

and U, n Uj = 8 if I i - j  I > 1. It follows from Lemma 5.6.5 
(letting U = UZi , C = CZi , V = C2,-, u CZi+, , and D = C1( U2i - C,,)) 
that there is a sequence {a2,} of positive numbers such that if PZi is defined 
to be the neighborhood (7) n E( U,, , U,, n (C2i-1 U C2,+,); M )  
of 7: U,, C M, then there is a deformation 

~ 2 i :  P2i x I - E(U2i I U2i n (Czi-1 V Czi+l); M )  x I 

of P2, into E(U2, , C,, ; M), hence into {q}, such that rpZi is modulo 
Fr, U,, . Likewise, there is a sequence {62i-l} of positive numbers such 
that if P2,-, is defined to be the neighborhood Nu2,-l,a2i-l (7) 
of 7: U2i-l C M in E(U,,-, ; M), then there is a deformation 
rpzi-l: P2,-, x I ---t E( UZi-, ; M) x I of PZi-, into E( U,,-, , C,+, ; M) 
such that rpZi-, takes place in 

%-l .min&i-a ,B, j )  (7) 

and rp2,-, is modulo Fr, UziPl. Let 6: M + (0, co) be such that 
sup 6 I U, < 6, for each i and let P be the 6(x)-neighborhood of 1, in 
Xm(M). Define a deformation rp: P --t &(M)  C Sm(M x I) by 

Then, 9, is the desired deformation. 
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We are now ready to give a proof of Immersion Lemma 5.6.1. The 
proof presented here was communicated to this author by R. D. Edwards. 
It was originated by Barden [2] and was formulated in the following 
picturesque form by Siebenmann. (Immersion Lemma 5.6.1 also 
follows from [Hirsch, 1 1 . )  

Proof of Immersion Lemma 5.6.1. We will work with the following 
inductive statement which is stronger than Lemma 5.6.1. 

n-DIMENSIONAL INDUCTIVE STATEMENT: There exists an immersion f 
o f T n  x IintoE" x IsuchthatfI 'Ton x Iisaproductmap,f  = a x 1, 
where Ton is Tn minus an n-cell. 

We adopt the following notation for this proof: Let I = [- 1, I ]  = J ,  
Jn = (J)",  S1 = I Ua J ,  T n  = ( S l ) .  and Ton = T n  - Int Jn. It is 
easy to see that En x S1 can be regarded as a subset of En+l where the 
I-fibers of En x I are straight and vertical in En+l (see Fig. 5.6.9). 

t 

Figure 5.6.9 

Assume that f and a are given by the inductive statement in dimension 
n. I t  is a simple matter to extend f to an immersion of Tn+l x I into 
En+l x I ,  that is, just let 

f x lsl: T" x S1 x I + E n  x S1 x ICEn+l  x I 

be the extension (see Fig. 56.10). However, f x 1,1 is not a product on 
T;+l x I ,  but merely on Ton x S1 x I .  The  way to correct this is to 
conjugate f x 1 ,I with a 90" rotation (on the I x I factor) of the missing 
plug (T;+l x I )  - (Ton x S1 x I )  = Int Jn x I x I .  The  fact that 
f x 1,1 I Ton x I2 is a product in the I2 factor allows one to do this. 
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 en+^ 
/",' , 

T " + ' x  I En+ '  x 1 

Figure 5.6.10 

Assume without loss of generality thatf( T n  x [-4, 41) C En x r-3, $1. 
Let h be a homeomorphism of I 2  that is the identity on Bd12 and is a 
n/2-rotation on [-g, $1 x [-$, $1 (see Fig. 5.6.11). Extend h via the 
identity to a homeomorphism A: S1 x 1- S1 x I (see Fig. 5.6.12). 

x 
_t 

12 

Figure 5.6.11 

- 
x 

_c 

S I X  I S ' X I  

Figure 5.6.12 
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Consider now the following immersion h of T n f l  x I into En+l x I, 

= U E n  x W ( f  x 1 S 1 ) ( l T 9 l  x 1). 

If we let g = h I T n f l  x [-9, &I, then it can easily be checked that g 
is a product on (To" x Sl) u (1" x [-i, *]) which is a deformation 
retract of T;+l x [-&, 81. Thus, without loss of generality we can 
assume that g is a product on T;+l x [*, &] (see Figs. 5.6.13 and 5.6.14). 

Figure 2.6.13 

Figure 5.6.14 

It is now easy to see that such a g gives rise to an immersion as desired 
in the theorem. This would be a trivial matter of reparametrizing the I 
coordinate if we knew that g(T"fl x [-8, i]) C E"+l x [-i, *I. T o  
get such an inclusion, one can shrink TZ+l a little, with the help of an 
interior collar, to T?+l, and using the fact that g I T:+l X [-i, *]is a 
product, isotop g(Tn+l x [-&, &I) into E"+l x [-- ;> - ;I) keeping 
g I T?+l x [-8, &] fixed. 

Let us conclude this section with a couple of remarks concerning how 
the preceding results on local contractibility relate to codimension zero 
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taming. First note that if Mn and il?P are P L  manifolds and if h:  M + A? 
is a topological homeomorphism which can be approximated arbitrarily 
closely by P L  homeomorphisms, then the results on local contrac- 
tibility imply that h is +tame. For instance, it follows from Theorem 
4.11.1 that stable homeomorphisms of En are €-tame. (For an example 
of another use of this observation, see Theorem I of [Cantrell and 
Rushing, 13.) A strong form of the hauptvermutung for PL manifolds 
(Question 1.6.5) is just the following codimension zero taming question: 
Can every topological homeomorphism of a P L  manifold Mn onto a PL 
manifold be +tamed? By using some of the techniques presented 
in this section as well as some work of Wall, it has recently been 
established by Kirby and Siebenmann that this codimension-zero taming 
theorem holds for many manifolds and fails for others. 



A P P E N D I X  

Some Topics for Further Study 

The  area of topological embeddings is now an active research area. 
Thus, although the subject matter of this book should provide a sound 
basis for development for some time to come, the serious student is 
advised to make a study of the current literature after covering this book. 
The  purpose of this appendix is to mention a few important recent 
developments which are particularly appropriate for study as follow-up 
material at this time. Most of the papers cited below have already been 
discussed in appropriate places in the text. 

In  Section 4.9, we presented McMillan’s result that locally nice 
codimension one spheres in Sn, n 3 5 ,  are weakly flat. Daverman [3] 
has recently shown that such spheres are, in fact, flat. Seebeck [3] made 
the first significant progress on the problem by showing that such 
spheres are flat if they can be approximated by locally flat ones. It 
follows from [Price and Seebeck, 1, 21 that such spheres can be approxi- 
mated by locally flat ones if they have a locally flat spot. Daverman used 
very strongly in his proof the fact that a locally nice codimension one 
sphere with a flat spot is flat. The  key to Daverman’s proof is a covering 
space argument similar to that of [Kirby, 41. (A generalization of that 
covering space argument was presented in Section 5,6.) Daverman’s 
proof also uses an infinite engulfing argument as suggested in [Rushing, 
101 and a result on homotopy tori given in [Hsiang and Wall, I]. 

Homma’s metastable range PL approximation theorem for embeddings 
of PL manifolds was presented in Section 5.4 and related results were 
discussed. Significant work which brings Homma’s approximation 
theorem up to codimension three is given in [Cernavskii, 7, 8, 91 and 
in [Miller, I] (see Section 5.4). Another major approximation theorem 
has been proved recently by Stan’ko [l]. In  particular, Stan’ko shows 
that any embedding of a codimension three compactum into En can be 
approximated by a locally nice embedding. 
294 
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Remark 5.2.4 indicated how a technique of Cernavskii suffices to 
prove the y-statements in the metastable range. The y-statements are 
established through codimension three in an important paper by Bryant 
and Seebeck [l]. The engulfing techniques (see Theorem 2.1) of [Bryant 
and Seebeck, I] are fundamental to the paper and they prove to be useful 
for other purposes. (See, for example [Bryant and Seebeck, 31.) Cernavskii 
has seen how to extend the work of [Bryant and Seebeck, I]  to all 
codimensions. (See Section 2.2 of [Cernavskii, 51.) 

Piecewise linear unknotting theorems for close embeddings in co- 
dimensions greater than two were proved for PL manifolds and for 
polyhedra in [Miller, 21 and [Connelly, 11, respectively. Each of these 
unknotting theorems can be used to prove a taming theorem. In partic- 
ular, Connelly (Theorem 1,) shows that close PL embeddings of 
polyhedra are E-isotopic in codimensions greater than two. He then uses 
that result to show that locally tame embeddings of finite polyhedra are 
etame in codimensions greater than two (Theorem 2). 

Finally, let us mention once again the amazing recent work of Kirby, 
Siebenmann,and Wall on triangulation, on the hauptvermutung, and on 
taming. For announcements of the results see [Kirby, Siebenmann, 
and Wall, I] and [Kirby and Siebenmann, 1, 31. Kirby [4] led to the 
work indicated in those announcements. (A generalization of the basic 
technique of [Kirby, 41 was presented in Section 5.6.) For some of the 
details of proof refer to [Kirby and Siebenmann, 21 and [Kirby, 51. 
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